Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9587-9593, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823538

RESUMO

Competition between exchange interactions and magnetocrystalline anisotropy may bring new magnetic states that are of great current interest. An applied hydrostatic pressure can further be used to tune their balance. In this work, we investigate the magnetization process of a biaxial antiferromagnet in an external magnetic field applied along the easy axis. We find that the single metamagnetic transition of the Ising type observed in this material under ambient pressure transforms under hydrostatic pressure into two transitions, a first-order spin-flop transition followed by a second-order transition toward a polarized ferromagnetic state near saturation. This reversible tuning into a new magnetic phase is obtained in layered bulk CrSBr at low temperature by varying the interlayer distance using high hydrostatic pressure, which efficiently acts on the interlayer magnetic exchange and is probed by magneto-optical spectroscopy.

2.
ACS Nano ; 16(8): 12656-12665, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35867668

RESUMO

Magnetic layered materials have emerged recently as promising systems to introduce magnetism in structures based on two-dimensional (2D) materials and to investigate exotic magnetic ground states in the 2D limit. In this work, we apply high hydrostatic pressures up to P ≈ 8.7 GPa to the bulk layered antiferromagnet FePS3 to tune the collective lattice excitations (phonons) in resonance with magnetic excitations (magnons). Close to P = 4 GPa, the magnon-phonon resonance is achieved, and the strong coupling between these collective modes leads to the formation of new quasiparticles, the magnon-polarons, evidenced in our low-temperature Raman scattering experiments by a particular avoided crossing behavior between the phonon and the doubly degenerate antiferromagnetic magnon. At the pressure-induced magnon-phonon resonance, three distinct coupled modes emerge. As it is mainly defined by intralayer properties, we show that the energy of the magnon is nearly pressure-independent. We additionally apply high magnetic fields up to B = 30 T to fully identify and characterize the magnon excitations and to explore the different magnon-polaron regimes for which the phonon has an energy lower than, equal to, or higher than the magnon energy. The description of our experimental data requires introducing a phonon-phonon coupling not taken into account in actual calculations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa