Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Cancer Control ; 30: 10732748231152328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714951

RESUMO

BACKGROUND: We retrospectively aimed to assess the prognostic significance of somatostatin receptor (SSTR) standardized uptake value (SUVmaxsstr), SSTR representative tumor volume (RTVsstr) and total lesion SSTR expression (TLsstr) obtained by [68Ga]Ga-edotreotide PET/CT ([68Ga]Ga-SSTR PET/CT) in patients with primary gastroenteropancreatic neuroendocrine tumors (GEP-NET) before surgery. MATERIAL AND METHODS: We analyzed patients who underwent [68Ga]Ga-SSTR PET/CT 3-6 weeks before surgery from February 2020 to April 2022. The mean SUVmaxsstr value, the RTVsstr (cm3; 42% threshold) and the TLsstr (g) were registered. Thereafter the patients were followed up 10.3 months (range 3-27). The PET/CT results were compared to the event free survival (EFS). RESULTS: Forty-two patients (61 ± 13 years) have been enrolled. At multivariate analysis only RTVsstr values were predictive. The Kaplan-Meier survival analysis for RTVsstr showed a significant better EFS in patients presenting lower values as compared to those having greater (P = .003, log-rank test). SUVmaxsstr was not suitable for predicting EFS, TLsstr mildly. CONCLUSION: RTVsstr represents a valuable volumetric parameter able to predict the outcome in GEP-NET patients who underwent surgery. The magnitude of the SSTR representative tumor burden holds a predominant value for determining the response to therapy in GEP-NET patients before surgery, rather than the maximal SSTR representation at single voxel.


Assuntos
Tumores Neuroendócrinos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Receptores de Somatostatina/metabolismo , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/cirurgia , Radioisótopos de Gálio , Carga Tumoral , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons/métodos
2.
Small ; 18(18): e2200174, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294104

RESUMO

Here, the synthesis and proof of exploitation of three-material inorganic heterostructures made of iron oxide-gold-copper sulfide (Fe3 O4 @Au@Cu2-x S) are reported. Starting with Fe3 O4 -Au dumbbell heterostructure as seeds, a third Cu2-x S domain is selectively grown on the Au domain. The as-synthesized trimers are transferred to water by a two-step ligand exchange procedure exploiting thiol-polyethylene glycol to coordinate Au and Cu2-x S surfaces and polycatechol-polyethylene glycol to bind the Fe3 O4 surface. The saline stable trimers possess multi-functional properties: the Fe3 O4 domain, of appropriate size and crystallinity, guarantees optimal heating losses in magnetic hyperthermia (MHT) under magnetic field conditions of clinical use. These trimers have indeed record values of specific adsorption rate among the inorganic-heterostructures so far reported. The presence of Au and Cu2-x S domains ensures a large adsorption which falls in the first near-infrared (NIR) biological window and is here exploited, under laser excitation at 808 nm, to produce photo-thermal heat alone or in combination with MHT obtained from the Fe3 O4 domain. Finally, an intercalation protocol with radioactive 64 Cu ions is developed on the Cu2-x S domain, reaching high radiochemical yield and specific activity making the Fe3 O4 @Au@Cu2-x S trimers suitable as carriers for 64 Cu in internal radiotherapy (iRT) and traceable by positron emission tomography (PET).


Assuntos
Ouro , Hipertermia Induzida , Ouro/química , Fenômenos Magnéticos , Magnetismo , Polietilenoglicóis/química
3.
J Phys Chem A ; 126(51): 9605-9617, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36524393

RESUMO

The growing interest in multifunctional nano-objects based on polymers and magnetic nanoparticles for biomedical applications motivated us to develop a scale-up protocol to increase the yield of polymeric magnetic nanobeads while aiming at keeping the structural features at optimal conditions. The protocol was applied to two different types of magnetic ferrite nanoparticles: the Mn-ferrite selected for their properties as contrast agents in magnetic resonance imaging and iron oxide nanostar shaped nanoparticles chosen for their heat performance in magnetic hyperthermia. At the same time, some experiments on surface functionalization of nanobeads with amino modified polyethyelene glycol (PEG) molecules have provided further insight into the formation mechanism of magnetic nanobeads and the need to cross-link the polymer shell to improve the stability of the beads, making them more suitable for further manipulation and use. The present work summarizes the most important parameters required to be controlled for the upscaling of nanobead synthesis in a bench protocol and proposes an alternative cross-linking strategy based on prefunctionalization of the polymer prior to the nanobead formation as a key parameter to improve the nanobead structural stability in solutions at different pHs and during surface functionalization.


Assuntos
Nanopartículas , Polímeros , Polímeros/química , Compostos Férricos/química , Nanopartículas/química , Imageamento por Ressonância Magnética/métodos
4.
Chem Soc Rev ; 50(20): 11614-11667, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661212

RESUMO

Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Humanos , Temperatura Alta , Hipertermia , Campos Magnéticos , Neoplasias/terapia
5.
Adv Funct Mater ; 30(28): 2002362, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684910

RESUMO

Here, cation exchange (CE) reactions are exploited to radiolabel ZnSe, ZnS, and CuFeS2 metal chalcogenide nanocrystals (NCs) with 64Cu. The CE protocol requires one simple step, to mix the water-soluble NCs with a 64Cu solution, in the presence of vitamin C used to reduce Cu(II) to Cu(I). Given the quantitative cation replacement on the NCs, a high radiochemical yield, up to 99%, is reached. Also, provided that there is no free 64Cu, no purification step is needed, making the protocol easily translatable to the clinic. A unique aspect of the approach is the achievement of an unprecedentedly high specific activity: by exploiting a volumetric CE, the strategy enables to concentrate a large dose of 64Cu (18.5 MBq) in a small NC dose (0.18 µg), reaching a specific activity of 103 TBq g-1. Finally, the characteristic dielectric resonance peak, still present for the radiolabeled 64Cu:CuFeS2 NCs after the partial-CE reaction, enables the generation of heat under clinical laser exposure (1 W cm-2). The synergic toxicity of photo-ablation and 64Cu ionization is here proven on glioblastoma and epidermoid carcinoma tumor cells, while no intrinsic cytotoxicity is seen from the NC dose employed for these dual experiments.

6.
Small ; 16(25): e1907419, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32459051

RESUMO

The controlled assembly of colloidal magnetic nanocrystals is key to many applications such as nanoelectronics, storage memory devices, and nanomedicine. Here, the motion and ordering of ferrimagnetic nanocubes in water via liquid-cell transmission electron microscopy is directly imaged in situ. Through the experimental analysis, combined with molecular dynamics simulations and theoretical considerations, it is shown that the presence of highly competitive interactions leads to the formation of stable monomers and dimers, acting as nuclei, followed by a dynamic growth of zig-zag chain-like assemblies. It is demonstrated that such arrays can be explained by first, a maximization of short-range electrostatic interactions, which at a later stage become surpassed by magnetic forces acting through the easy magnetic axes of the nanocubes, causing their tilted orientation within the arrays. Moreover, in the confined volume of liquid in the experiments, interactions of the nanocube surfaces with the cell membranes, when irradiated at relatively low electron dose, slow down the kinetics of their self-assembly, facilitating the identification of different stages in the process. The study provides crucial insights for the formation of unconventional linear arrays made of ferrimagnetic nanocubes that are essential for their further exploitation in, for example, magnetic hyperthermia, magneto-transport devices, and nanotheranostic tools.


Assuntos
Magnetismo , Nanopartículas , Fenômenos Magnéticos , Microscopia Eletrônica de Transmissão , Nanomedicina
7.
Acc Chem Res ; 51(5): 999-1013, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29733199

RESUMO

Combining hard matter, like inorganic nanocrystals, and soft materials, like polymers, can generate multipurpose materials with a broader range of applications with respect to the individual building blocks. Given their unique properties at the nanoscale, magnetic nanoparticles (MNPs) have drawn a great deal of interest due to their potential use in the biomedical field, targeting several applications such as heat hubs in magnetic hyperthermia (MHT, a heat-damage based therapy), contrast agents in magnetic resonance imaging (MRI), and nanocarriers for targeted drug delivery. At the same time, polymers, with their versatile macromolecular structure, can serve as flexible platforms with regard to constructing advanced functional materials. Advances in the development of novel polymerization techniques has enabled the preparation of a large portfolio of polymers that have intriguing physicochemical properties; in particular, those polymers that can undergo conformational and structural changes in response to their surrounding environmental stimuli. Therefore, merging the unique features of MNPs with polymer responsive properties, such as pH and thermal stimuli activation, enables smart control of polymer properties operated by the MNPs and vice versa at an unprecedented level of sophistication. These magnetic-stimuli-responsive nanosystems will impact the cancer field by combining magnetic hyperthermia with stimuli-dependent controlled drug delivery toward multimodal therapies. In this approach, a malignant tumor may be destroyed by a combination of the synergic effects of thermal energy generated by MNPs and the controlled release of antitumoral agents, activated by means of either heat or pH changes, finally leading to a much more effective cancer treatment than those available today. Also, taking advantage of such a triggered chemotherapy will overcome the notorious drawbacks of classic chemotherapy. Nevertheless, tracking the changes in the magnetic properties of such pH-responsive magnetic nanoparticles, which are provided by changes in relaxation signals of water molecules surrounding the nanoplatform, is a novel approach to the detection of pathological conditions (such as pH-changes at the ischemic and tumor sites). Despite great efforts by chemists to fabricate different featured materials, there have been few successful preclinical studies to date. A clinical translation of magnetic stimuli-responsive systems would require overcoming the actual nanosystem limitations and the joint efforts of an interdisciplinary scientific community. In this Account, we have framed state of the art magnetic stimuli-responsive systems, focusing on thermo- and pH-responsive behavior, following an organization based on the response mechanisms of polymers. By evaluating the features of the most representative and advanced nanosystems that already exist in literature, we present the challenges to overcome, the future directions to undertake for the development of magnetic stimuli-responsive nanoplatforms that will work under clinical operating conditions and have biodegradable and biocompatible features, and a consideration of the technical aspects.

8.
Nano Lett ; 18(11): 6856-6866, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30336062

RESUMO

Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+-deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO subdomains as well as structural defects. This phase transformation causes a 10-fold increase in the magnetic losses of the nanocubes, which remain exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of these nanoparticles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance into intracellular environment.


Assuntos
Compostos Férricos/química , Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas de Magnetita/química
9.
Circ Res ; 118(8): 1244-53, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26926470

RESUMO

RATIONALE: It has been reported that epicardial adipose tissue (EAT) may affect myocardial autonomic function. OBJECTIVE: The aim of this study was to explore the relationship between EAT and cardiac sympathetic nerve activity in patients with heart failure. METHODS AND RESULTS: In 110 patients with systolic heart failure, we evaluated the correlation between echocardiographic EAT thickness and cardiac adrenergic nerve activity assessed by (123)I-metaiodobenzylguanidine ((123)I-MIBG). The predictive value of EAT thickness on cardiac sympathetic denervation ((123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score) was tested in a multivariate analysis. Furthermore, catecholamine levels, catecholamine biosynthetic enzymes, and sympathetic nerve fibers were measured in EAT and subcutaneous adipose tissue biopsies obtained from patients with heart failure who underwent cardiac surgery. EAT thickness correlated with (123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score, but not with left ventricular ejection fraction. Moreover, EAT resulted as an independent predictor of (123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score and showed a significant additive predictive value on (123)I-MIBG planar and single-photon emission computed tomography results over demographic and clinical data. Although no differences were found in sympathetic innervation between EAT and subcutaneous adipose tissue, EAT showed an enhanced adrenergic activity demonstrated by the increased catecholamine levels and expression of catecholamine biosynthetic enzymes. CONCLUSIONS: This study provides the first evidence of a direct correlation between increased EAT thickness and cardiac sympathetic denervation in heart failure.


Assuntos
Tecido Adiposo/inervação , Fibras Adrenérgicas/diagnóstico por imagem , Insuficiência Cardíaca/diagnóstico por imagem , Pericárdio/inervação , Tecido Adiposo/diagnóstico por imagem , Idoso , Tomografia Computadorizada por Emissão de Fóton Único de Sincronização Cardíaca/métodos , Ecocardiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Pericárdio/diagnóstico por imagem
10.
Small ; 13(31)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28660724

RESUMO

In order to provide insight into how anisotropic nano-objects interact with living cell membranes, and possibly self-assemble, magnetic nanorods with an average size of around 100 nm × 1 µm are designed by assembling iron oxide nanocubes within a polymeric matrix under a magnetic field. The nano-bio interface at the cell membrane under the influence of a rotating magnetic field is then explored. A complex structuration of the nanorods intertwined with the membranes is observed. Unexpectedly, after a magnetic rotating stimulation, the resulting macrorods are able to rotate freely for multiple rotations, revealing the creation of a biomagnetic torsion pendulum.


Assuntos
Membrana Celular , Nanopartículas de Magnetita/química , Nanotubos/química , Polímeros/química , Rotação , Torção Mecânica , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Humanos , Campos Magnéticos , Células PC-3 , Fenômenos Físicos , Polimerização , Polímeros/farmacologia
11.
Bioconjug Chem ; 28(11): 2707-2714, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28945361

RESUMO

We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs) was obtained by controlling the solvent composition and the addition rate of the destabilizing solvent. The magnetic properties of the MNPs remained unaltered after their encapsulation into the polymeric beads as shown by the T2 relaxivity measurements. The UCNPs maintain photoluminescent properties even when embedded with the MNPs into the polymer bead. Moreover, the light emitted by the magnetic and upconverting nanobeads (MUCNBs) under NIR excitation (λexc = 980 nm) was clearly observed through different thicknesses of agarose gel or through a mouse skin layer. The comparison with magnetic and luminescent nanobeads based on red-emitting quantum dots (QDs) demonstrated that while the QD-based beads show significant autofluorescence background from the skin, the signal obtained by the MUCNBs allows a decrease in this background. In summary, these results indicate that MUCNBs are good magnetic and optical probes for in vivo multimodal imaging sensors.


Assuntos
Substâncias Luminescentes/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Imagem Óptica/métodos , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Imagem Multimodal , Pontos Quânticos/química , Pele/diagnóstico por imagem
12.
Eur J Nucl Med Mol Imaging ; 44(13): 2266-2273, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28733764

RESUMO

PURPOSE: Cardiac sympathetic denervation may be detectable in patients with Anderson-Fabry disease (AFD), suggesting its usefulness for early detection of the disease. However, the relationship between sympathetic neuronal damage measured by 123I-metaiodobenzylguanidine (MIBG) imaging with myocardial fibrosis on cardiac magnetic resonance (CMR) is still unclear. METHODS: Cardiac sympathetic innervation was assessed by 123I-MIBG single-photon emission computed tomography (SPECT) in 25 patients with genetically proved AFD. Within one month from MIBG imaging, all patients underwent contrast-enhanced CMR. MIBG defect size and fibrosis size on CMR were measured for the left ventricle (LV) and expressed as %LV. RESULTS: Patients were divided into three groups according to MIBG and CMR findings: (1) matched normal, without MIBG defects and without fibrosis on CMR (n = 10); (2) unmatched, with MIBG defect but without fibrosis (n = 5); and (3) matched abnormal, with MIBG defect and fibrosis (n = 10). The three groups did not differ with respect to age, gender, α-galactosidase, proteinuria, glomerular filtration rate, and troponin I, while New York Heart Association class (p = 0.008), LV hypertrophy (p = 0.05), and enzyme replacement therapy (p = 0.02) were different among groups. Although in patients with matched abnormal findings, there was a significant correlation between MIBG defect size and area of fibrosis at CMR (r2 = 0.98, p < 0.001), MIBG defect size was larger than fibrosis size (26 ± 23 vs. 18 ± 13%LV, p = 0.02). CONCLUSION: Sympathetic neuronal damage is frequent in AFD patients, and it may precede myocardial damage, such as fibrosis. Thus, 123I-MIBG imaging can be considered a challenging technique for early detection of cardiac involvement in AFD.


Assuntos
3-Iodobenzilguanidina , Doença de Fabry/patologia , Coração/inervação , Miocárdio/patologia , Neurônios/patologia , Sistema Nervoso Simpático/patologia , Adulto , Idoso , Estudos de Coortes , Feminino , Fibrose , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Sistema Nervoso Simpático/diagnóstico por imagem
13.
J Nucl Cardiol ; 24(1): 103-107, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26626785

RESUMO

BACKGROUND: PARK2 is an autosomal recessive parkinsonism caused by parkin gene mutations. Several Parkinson's Disease (PD) cases harbor single parkin mutations, raising a debate about the pathogenic meaning of heterozygous mutations. Here, we evaluate cardiac autonomic innervation in patients with either two or one parkin mutations compared to patients with idiopathic PD (IPD). PATIENTS AND METHODS: Myocardial 123I-metaiodobenzylguanidine (MIBG) scintigraphy was performed in six PD patients with single parkin mutations (HET), four with two mutations (PARK2), and eight with IPD. RESULTS: In comparison to control group, IPD patients showed lower early and late heart-to-mediastinum (H/M) ratios and higher washout rates, whereas HET patients had only lower early H/M ratio, and PARK2 patients were not different for any parameter. At individual level, MIBG findings were abnormal in 7/8 IPD, in 4/6 HET and in 1/4 PARK2 patients. CONCLUSIONS: Preserved cardiac 123I-MIBG uptake confirms that PARK2 pathogenic mechanism, at least partially, differs from that responsible for IPD. HET subjects show intermediate findings, suggesting possible heterogeneity.


Assuntos
3-Iodobenzilguanidina , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Coração/diagnóstico por imagem , Coração/fisiopatologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Idoso , Doenças do Sistema Nervoso Autônomo/diagnóstico por imagem , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Doença de Parkinson/diagnóstico por imagem , Cintilografia/métodos , Compostos Radiofarmacêuticos
14.
Nanomedicine ; 13(1): 275-286, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27565688

RESUMO

Dual imaging dramatically improves detection and early diagnosis of cancer. In this work we present an oil in water (O/W) nano-emulsion stabilized with lecithin and loaded with cobalt ferrite oxide (Co0.5Fe2.5O4) nanocubes for photo-acoustic and magnetic resonance dual imaging. The nanocarrier is responsive in in vitro photo-acoustic and magnetic resonance imaging (MRI) tests. A clear and significant time-dependent accumulation in tumor tissue is shown in in vivo photo-acoustic studies on a murine melanoma xenograft model. The proposed O/W nano-emulsion exhibits also high values of r2/r1 (ranging from 45 to 85, depending on the magnetic field) suggesting a possible use as T2 weighted image contrast agents. In addition, viability and cellular uptake studies show no significant cytotoxicity on the fibroblast cell line. We also tested the O/W nano-emulsion loaded with curcumin against melanoma cancer cells demonstrating a significant cytotoxicity and thus showing possible therapeutic effects in addition to the in vivo imaging.


Assuntos
Cobalto/química , Meios de Contraste , Imageamento por Ressonância Magnética , Melanoma/diagnóstico por imagem , Nanopartículas/química , Técnicas Fotoacústicas , Células 3T3 , Animais , Emulsões/química , Humanos , Masculino , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Óxidos/química
15.
Pol J Radiol ; 82: 422-425, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29662567

RESUMO

BACKGROUND: Evaluation of a patient with melanoma in whom an adrenal mass was detected on CT and MR during follow-up and further characterized with PET-CT and MIBG scintigraphy. CASE REPORT: In this case report, we describe a patient with melanoma in whom an adrenal mass was detected on CT and MRI during post-surgical follow-up and was further characterized with radionuclide studies consisting of PET-CT and MIBG scintigraphy. Although the results of imaging studies suggested that the mass was a pheochromocytoma, a cortical adrenal adenoma was histologically proven. CONCLUSIONS: Integrated structural and functional imaging is recommended to characterize adrenal tumors; however, mistakes may occur and therefore careful imaging evaluation is required.

16.
Eur J Nucl Med Mol Imaging ; 43(4): 729-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26639748

RESUMO

PURPOSE: Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. METHODS: Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and (123)I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. RESULTS: In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). CONCLUSION: The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction.


Assuntos
3-Iodobenzilguanidina , Doença de Fabry/diagnóstico por imagem , Compostos Radiofarmacêuticos , Sistema Nervoso Simpático/fisiopatologia , Função Ventricular Esquerda , Adulto , Idoso , Diástole , Doença de Fabry/fisiopatologia , Feminino , Coração/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons
17.
Eur J Nucl Med Mol Imaging ; 43(13): 2392-2400, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27287990

RESUMO

PURPOSE: Sympathetic nervous system (SNS) hyperactivity is a salient characteristic of chronic heart failure (HF) and contributes to the progression of the disease. Iodine-123 meta-iodobenzylguanidine (123I-mIBG) imaging has been successfully used to assess cardiac SNS activity in HF patients and to predict prognosis. Importantly, SNS hyperactivity characterizes also physiological ageing, and there is conflicting evidence on cardiac 123I-mIBG uptake in healthy elderly subjects compared to adults. However, little data are available on the impact of ageing on cardiac sympathetic nerve activity assessed by 123I-mIBG scintigraphy, in patients with HF. METHODS AND RESULTS: We studied 180 HF patients (age = 66.1 ± 10.5 years [yrs]), left ventricular ejection fraction (LVEF = 30.6 ± 6.3 %) undergoing cardiac 123I-mIBG imaging. Early and late heart to mediastinum (H/M) ratios and washout rate were calculated in all patients. Demographic, clinical, and echocardiographic data were also collected. Our study population consisted of 53 patients aged >75 years (age = 77.7 ± 4.0 year), 67 patients aged 62-72 years (age = 67.9 ± 3.2 years) and 60 patients aged ≤61 year (age = 53.9 ± 5.6 years). In elderly patients, both early and late H/M ratios were significantly lower compared to younger patients (p < 0.05). By multivariate analysis, H/M ratios (both early and late) and washout rate were significantly correlated with LVEF and age. CONCLUSIONS: Our data indicate that, in a population of HF patients, there is an independent age-related effect on cardiac SNS innervation assessed by 123I-mIBG imaging. This finding suggests that cardiac 123I-mIBG uptake in patients with HF might be affected by patient age.


Assuntos
3-Iodobenzilguanidina , Envelhecimento , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Sistema Nervoso Simpático/diagnóstico por imagem , Sistema Nervoso Simpático/fisiopatologia , Idoso , Técnicas de Imagem Cardíaca/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/métodos
18.
Nanotechnology ; 27(25): 255101, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27176116

RESUMO

Gold nanorods (AuNRs) are eligible for a variety of biological applications including cell imaging, sensing, and photothermal therapy thanks to their optical properties. The aim of this work is to show how AuNRs could be employed as non-photobleachable optical contrast agents for biomedical applications. In order to demonstrate the feasibility of their use as optical trackers, we employed two-photon emission confocal microscopy on cells incubated with PEGylated AuNRs. Remarkably, AuNRs were localized mostly in the perinuclear zone and microscopy characterization showed the presence of a considerable number of rods inside cell nuclei. Furthermore, we estimated the toxicity and the efficiency of cellular uptake of the PEGylated AuNRs as a function of administered dose on HeLa/3T3 cell lines and on zebrafish during development, employed as an in vivo model. Eventually, we observed good agreement between in vivo and in vitro experiments. The employed AuNRs were prepared through a photochemical protocol here improved by tuning the amount of the cationic surfactant cetyltrimethylammonium bromide for the achievement of AuNRs at two different aspect ratios. Furthermore we also investigated if the AuNR aspect ratio influenced the toxicity and the efficiency of cellular uptake of the PEGylated AuNRs in HeLa/3T3 cell lines and in zebrafish embryos.


Assuntos
Nanotubos , Ouro
19.
Phys Chem Chem Phys ; 18(25): 16848-55, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27282828

RESUMO

A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine.

20.
J Am Chem Soc ; 137(48): 15145-51, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26551614

RESUMO

We report a simple method for the incorporation of Cu(I) or (64)Cu(I) radionuclides in covellite nanocrystals (CuS NCs). After the in situ reduction of Cu(II) or (64)Cu(II) ions by ascorbic acid, their incorporation in PEG-coated CuS NCs takes place at room temperature. In all the reaction steps, the stability of the NCs under physiological conditions was ensured. The copper incorporation reaction could also take place on CuS NCs bearing biotin molecules at their surface, with no detrimental effects on the specific binding affinity of the NCs toward streptavidin after incorporation. At low loading of Cu ions, the strong near-infrared (NIR) absorption band of the starting CuS NCs was essentially preserved, which allowed for efficient plasmonic photothermal therapy. The combined presence in the NCs of (64)Cu ions, well suitable for positron emission tomography, and of free carriers responsible for the NIR absorption, should enable their theranostic use as radiotracers and as photothermal probes in tumor ablation treatments. Moreover, the simplicity of the preparation scheme, which involves the use of radioactive species only as a last step, makes the protocol easily transferable to the clinical practice.


Assuntos
Radioisótopos de Cobre/química , Cobre/química , Sondas Moleculares , Nanopartículas , Eletroforese em Gel de Ágar , Estudos de Viabilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa