Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(6): 4512-4519, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32374617

RESUMO

Ultrasound-activated nanobubbles are being widely investigated as contrast agents and therapeutic vehicles. Nanobubbles hold potential for accessing the tumor extravascular compartment, though this relies on clinically debated passive accumulation for which evidence to date is indirect. We recently reported ultrasound-triggered conversion of high payload porphyrin-encapsulated microbubbles to nanobubbles, with actively enhanced permeability for local delivery. This platform holds implications for optical/ultrasound-based imaging and therapeutics. While promising, it remains to be established how nanobubbles are generated and whether they extravasate intact. Here, insights into the conversion process are reported, complemented by novel simultaneous intravital and acoustic monitoring in tumor-affected functional circulation. The first direct acoustic evidence of extravascular intact nanobubbles are presented. These insights collectively advance this delivery platform and multimodal micro- and nanobubbles, extending their utility for imaging and therapeutics within and beyond the vasculature.


Assuntos
Meios de Contraste , Microbolhas , Neoplasias , Ultrassonografia , Acústica , Humanos , Nanotecnologia
2.
Brain Stimul ; 17(4): 734-751, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880207

RESUMO

BACKGROUND: Low-intensity transcranial ultrasound has surged forward as a non-invasive and disruptive tool for neuromodulation with applications in basic neuroscience research and the treatment of neurological and psychiatric conditions. OBJECTIVE: To provide a comprehensive overview and update of preclinical and clinical transcranial low intensity ultrasound for neuromodulation and emphasize the emerging role of functional brain mapping to guide, better understand, and predict responses. METHODS: A systematic review was conducted by searching the Web of Science and Scopus databases for studies on transcranial ultrasound neuromodulation, both in humans and animals. RESULTS: 187 relevant studies were identified and reviewed, including 116 preclinical and 71 clinical reports with subjects belonging to diverse cohorts. Milestones of ultrasound neuromodulation are described within an overview of the broader landscape. General neural readouts and outcome measures are discussed, potential confounds are noted, and the emerging use of functional magnetic resonance imaging is highlighted. CONCLUSION: Ultrasound neuromodulation has emerged as a powerful tool to study and treat a range of conditions and its combination with various neural readouts has significantly advanced this platform. In particular, the use of functional magnetic resonance imaging has yielded exciting inferences into ultrasound neuromodulation and has the potential to advance our understanding of brain function, neuromodulatory mechanisms, and ultimately clinical outcomes. It is anticipated that these preclinical and clinical trials are the first of many; that transcranial low intensity focused ultrasound, particularly in combination with functional magnetic resonance imaging, has the potential to enhance treatment for a spectrum of neurological conditions.

3.
Theranostics ; 14(5): 1794-1814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505609

RESUMO

Rationale: The acoustic stimulation of microbubbles within microvessels can elicit a spectrum of therapeutically relevant bioeffects from permeabilization to perfusion shutdown. These bioeffects ultimately arise from complex interactions between microbubbles and microvascular walls, though such interactions are poorly understood particularly at high pressure, due to a paucity of direct in vivo observations. The continued development of focused ultrasound methods hinges in large part on establishing links between microbubble-microvessel interactions, cavitation signals, and bioeffects. Methods: Here, a system was developed to enable simultaneous high-speed intravital imaging and cavitation monitoring of microbubbles in vivo in a chorioallantoic membrane model. Exposures were conducted using the clinical agent DefinityTM under conditions previously associated with microvascular damage (1 MHz, 0.5-3.5 MPa, 5 ms pulse length). Results: Ultrasound-activated microbubbles could be observed and were found to induce localized wall deformations that were more pronounced in smaller microvessels and increased with pressure. A central finding was that microbubbles could extravasate from microvessels (from 34% of vessels at 1 MPa to 79% at 3 MPa) during insonation (94% within 0.5 ms) and that this occurred more frequently and in progressively larger microvessels (up to 180 µm) as pressure was increased. Following microbubble extravasation, transient or sustained red blood cell leakage ensued at the extravasation site in 96% of cases for pressures ≥1 MPa. Conclusions: The results here represent the first high-speed in vivo investigation of high-pressure focused ultrasound-induced microbubble-microvessel interactions. This data provides direct evidence that the process of activated microbubble extravasation can occur in vivo and that it is linked to producing microvessel wall perforations of sufficient size to permit red blood cell leakage. The association of red blood cell leakage with microbubble extravasation provides mechanistic insight into the process of microvessel rupture, which has been widely observed in histology.


Assuntos
Membrana Corioalantoide , Microbolhas , Animais , Microscopia , Ultrassonografia/métodos , Microscopia Intravital
4.
Theranostics ; 14(8): 3150-3177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855178

RESUMO

Current pharmacological therapeutic approaches targeting chronic inflammation exhibit transient efficacy, often with adverse effects, limiting their widespread use - especially in the context of neuroinflammation. Effective interventions require the consideration of homeostatic function, pathway dysregulation, and pleiotropic effects when evaluating therapeutic targets. Signalling molecules have multiple functions dependent on the immune context, and this complexity results in therapeutics targeting a single signalling molecule often failing in clinical translation. Additionally, the administration of non-physiologic levels of neurotrophic or anti-inflammatory factors can alter endogenous signalling, resulting in unanticipated effects. Exacerbating these challenges, the central nervous system (CNS) is isolated by the blood brain barrier (BBB), restricting the infiltration of many pharmaceutical compounds into the brain tissue. Consequently, there has been marked interest in therapeutic techniques capable of modulating the immune response in a pleiotropic manner; ultrasound remains on this frontier. While ultrasound has been used therapeutically in peripheral tissues - accelerating healing in wounds, bone fractures, and reducing inflammation - it is only recently that it has been applied to the CNS. The transcranial application of low intensity pulsed ultrasound (LIPUS) has successfully mitigated neuroinflammation in vivo, in models of neurodegenerative disease across a broad spectrum of ultrasound parameters. To date, the underlying biological effects and signalling pathways modulated by ultrasound are poorly understood, with a diverse array of reported molecules implicated. The distributed nature of the beneficial response to LIPUS implies the involvement of an, as yet, undetermined upstream signalling pathway, homologous to the protective effect of febrile range hyperthermia in chronic inflammation. As such, we review the heat shock response (HSR), a protective signalling pathway activated by thermal and mechanical stress, as the possible upstream regulator of the anti-inflammatory effects of ultrasound.


Assuntos
Resposta ao Choque Térmico , Doenças Neuroinflamatórias , Humanos , Animais , Doenças Neuroinflamatórias/imunologia , Terapia por Ultrassom/métodos , Inflamação/imunologia , Barreira Hematoencefálica/metabolismo
5.
ACS Nano ; 18(1): 410-427, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147452

RESUMO

Focused ultrasound-stimulated microbubbles can induce blood flow shutdown and ischemic necrosis at higher pressures in an approach termed antivascular ultrasound. Combined with conventional therapies of chemotherapy, immunotherapy, and radiation therapy, this approach has demonstrated tumor growth inhibition and profound synergistic antitumor effects. However, the lower cavitation threshold of microbubbles can potentially yield off-target damage that the polydispersity of clinical agent may further exacerbate. Here we investigate the use of a monodisperse nanodroplet formulation for achieving antivascular effects in tumors. We first develop stable low boiling point monodisperse lipid nanodroplets and examine them as an alternative agent to mediate antivascular ultrasound. With synchronous intravital imaging and ultrasound monitoring of focused ultrasound-stimulated nanodroplets in tumor microvasculature, we show that nanodroplets can trigger blood flow shutdown and do so with a sharper pressure threshold and with fewer additional events than conventionally used microbubbles. We further leverage the smaller size and prolonged pharmacokinetic profile of nanodroplets to allow for potential passive accumulation in tumor tissue prior to antivascular ultrasound, which may be a means by which to promote selective tumor targeting. We find that vascular shutdown is accompanied by inertial cavitation and complex-order sub- and ultraharmonic acoustic signatures, presenting an opportunity for effective feedback control of antivascular ultrasound.


Assuntos
Neoplasias , Humanos , Ultrassonografia , Acústica , Microvasos/diagnóstico por imagem , Microscopia Intravital , Microbolhas
6.
Adv Sci (Weinh) ; 11(4): e2304453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032129

RESUMO

Microbubble-enabled focused ultrasound (MB-FUS) has revolutionized nano and molecular drug delivery capabilities. Yet, the absence of longitudinal, systematic, quantitative studies of microbubble shell pharmacokinetics hinders progress within the MB-FUS field. Microbubble radiolabeling challenges contribute to this void. This barrier is overcome by developing a one-pot, purification-free copper chelation protocol able to stably radiolabel diverse porphyrin-lipid-containing Definity® analogues (pDefs) with >95% efficiency while maintaining microbubble physicochemical properties. Five tri-modal (ultrasound-, positron emission tomography (PET)-, and fluorescent-active) [64 Cu]Cu-pDefs are created with varying lipid acyl chain length and charge, representing the most prevalently studied microbubble compositions. In vitro, C16 chain length microbubbles yield 2-3x smaller nanoprogeny than C18 microbubbles post FUS. In vivo, [64 Cu]Cu-pDefs are tracked in healthy and 4T1 tumor-bearing mice ± FUS over 48 h qualitatively through fluorescence imaging (to characterize particle disruption) and quantitatively through PET and γ-counting. These studies reveal the impact of microbubble composition and FUS on microbubble dissolution rates, shell circulation, off-target tissue retention (predominantly the liver and spleen), and FUS enhancement of tumor delivery. These findings yield pharmacokinetic microbubble structure-activity relationships that disrupt conventional knowledge, the implications of which on MB-FUS platform design, safety, and nanomedicine delivery are discussed.


Assuntos
Microbolhas , Neoplasias , Camundongos , Animais , Cobre , Ultrassonografia , Lipídeos/química
7.
Theranostics ; 13(1): 250-266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593952

RESUMO

Rationale: Focused ultrasound-stimulated microbubbles have been shown to be capable of inducing blood flow shutdown and necrosis in a range of tissue types in an approach termed antivascular ultrasound or nonthermal ablation. In oncology, this approach has demonstrated tumor growth inhibition, and profound synergistic antitumor effects when combined with traditional platforms of chemo-, radiation- and immune-therapies. However, the exposure schemes employed have been broad and underlying mechanisms remain unclear with fundamental questions about exposures, vessel types and sizes involved, and the nature of bubble behaviors and their acoustic emissions resulting in vascular damage - impeding the establishment of standard protocols. Methods: Here, ultrasound transmitters and receivers are integrated into a murine dorsal window chamber tumor model for intravital microscopy studies capable of real-time visual and acoustic monitoring during antivascular ultrasound. Vessel type (normal and tumor-affected), caliber, and viability are assessed under higher pressure conditions (1, 2, and 3 MPa), and cavitation signatures are linked to the biological effects. Results: Vascular events occurred preferentially in tumor-affected vessels with greater incidence in smaller vessels and with more severity as a function of increasing pressure. Vascular blood flow shutdown was found to be due to a combination of focal disruption events and network-related flow changes. Acoustic emissions displayed elevated broadband noise and distinct sub- and ultra-harmonics and their associated third-order peaks with increasing pressure. Conclusions: The observed vascular events taken collectively with identified cavitation signatures provide an improved mechanistic understanding of antivascular ultrasound at the microscale, with implications for establishing a specific treatment protocol and control platform.


Assuntos
Neoplasias , Animais , Camundongos , Humanos , Ultrassonografia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Acústica , Microvasos/diagnóstico por imagem , Microscopia Intravital , Microbolhas
8.
Phys Med Biol ; 68(19)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37607563

RESUMO

Biaxial driving can more efficiently convert electrical power to forward acoustic power in piezoelectric materials, and the interaction between the orthogonal electric fields can produce a combination of extensional and shear deformations as a function of the phase difference between them to allow dynamic steering of the beam with a single-element. In this study, we demonstrate for the first time the application of a single-element biaxially driven ring transducerin vivofor blood-brain barrier opening in mice, and compare it to that achieved with a conventional single-element highly focused (F# = 0.7) spherical transducer operating at a similar frequency. Transcranial focused ultrasound (0.45 MPa, 10 ms pulse length, 1 Hz repetition frequency, 30 s duration) was applied bilaterally to mice with a 40µl/kg bolus of DefinityTMmicrobubbles, employing either a single-element biaxial ring (1.482 MHz, 10 mm inner diameter, 13.75 mm outer diameter) or spherical (1.5 MHz, 35 mm diameter, F# = 0.7; RK50, FUS Instruments) transducer on each side. Follow-up MRI scans (T1 pre- and post- 0.2 mmol/kg Gd injection, T2) were acquired to assess blood-brain barrier opening volume and potential damage. Compared to blood-brain barrier opening achieved with a conventional single-element spherical focused transducer, the opening volume achieved with a single-element biaxial ring transducer was 35% smaller (p= 0.002) with a device of a ring diameter of 40% the aperture size. Axial refocusing was further demonstrated with the single-element biaxial ring transducer, yielding a 1.63 mm deeper, five-fold larger opening volume (p= 0.048) relative to its small-focus mode. The biaxial ring transducer achieved a more localized opening compared to the spherical focused transducer under the same parameters, and further enabled dynamic axial refocusing with a single-element transducer with a smaller fabrication footprint.


Assuntos
Acústica , Barreira Hematoencefálica , Animais , Camundongos , Barreira Hematoencefálica/diagnóstico por imagem , Eletricidade , Frequência Cardíaca , Microbolhas
9.
Focus (Am Psychiatr Publ) ; 20(1): 100-116, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35746942

RESUMO

(Appeared originally in Theranostics 2021; 11:1655-1671) Reprinted under Creative Commons Attribution License.

10.
Theranostics ; 11(4): 1655-1671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408773

RESUMO

Rationale: Delivery of therapeutic agents to the brain is limited by the presence of the blood-brain barrier (BBB). An emerging strategy to temporarily and locally increase the permeability of the BBB is the use of transcranial focused ultrasound (FUS) and systematically injected microbubbles (MBs). FUS+MB BBB treatments cause an acute inflammatory response, marked by a transient upregulation of pro-inflammatory genes; however, the cellular immune response remains unknown. Methods: FUS+MB BBB treatments were monitored in real-time using two-photon fluorescence microscopy and transgenic EGFP Wistar rats, which harbour several fluorescent cell types. Leukocyte identification and counts were confirmed using magnetic resonance imaging-guided FUS+MB BBB treatments. Participation of leukocytes in reducing ß-amyloid pathology following repeated FUS+MB BBB treatments was investigated in the TgCRND8 mouse model of Alzheimer's disease. Results: Intravascular leukocyte activity indicative of acute inflammation were identified, including transendothelial migration, formation of cell aggregates, and cell masses capable of perturbing blood flow. Leukocyte responses were only observed after the onset of sonication. Neutrophils were identified to be a key participating leukocyte. Significantly more neutrophils were detected in the sonicated hemisphere compared to the contralateral hemisphere, and to untreated controls. Three to five biweekly FUS+MB BBB treatments did not induce significantly more neutrophil recruitment, nor neutrophil phagocytosis of ß-amyloid plaques, in TgCRND8 mice compared to untreated controls. Conclusions: This study provides evidence that the cellular aspect of the peripheral immune response triggered by FUS+MB BBB treatments begins immediately after sonication, and emphasizes the importance for further investigations to be conducted to understand leukocyte dynamics and cerebral blood flow responses to FUS+MB BBB treatments.


Assuntos
Doença de Alzheimer/imunologia , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Leucócitos/imunologia , Microbolhas , Infiltração de Neutrófilos/imunologia , Sonicação/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/radioterapia , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Transporte Biológico , Barreira Hematoencefálica/efeitos da radiação , Feminino , Proteínas de Fluorescência Verde , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/radioterapia , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia , Ratos , Ratos Wistar
11.
Ultrasonics ; 110: 106245, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32932144

RESUMO

Emerging contrast imaging studies have highlighted the potential of nanobubbles for both intravascular and extravascular applications. Reports to date on nanobubbles have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and B-mode or contrast-mode on preclinical and clinical systems. However, none of these studies directly examined nanobubble acoustic signatures systematically to implement nonlinear imaging schemes in a methodical manner based on nanobubble behaviour. Here, nanobubble nonlinear behaviour is investigated at high frequencies (12.5, 25, 30 MHz) and low concentration (106 mL-1) in a channel phantom, with different pulse types in single- and multi-pulse sequences to examine behaviour under conditions relevant to high frequency imaging. Porphyrin nanobubbles are demonstrated to initiate nonlinear scattering at high frequencies in a pressure-threshold dependent manner, as previously observed at low frequencies. This threshold behaviour was then utilized to demonstrate enhanced nanobubble imaging with pulse inversion, amplitude modulation, and a combination of the two, progressing towards the improved sensitivity and expanded utility of these ultrasound contrast agents.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33513102

RESUMO

There has been growing interest in nanobubbles (NBs) for vascular and extravascular ultrasound contrast imaging and therapeutic applications. Studies to date have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and uncalibrated B-mode or contrast-mode on commercial systems without reporting investigations on NB signatures upon which the imaging protocols should be based. We recently demonstrated that low concentrations (106 mL-1) of porphyrin-lipid-encapsulated NBs scatter nonlinearly at low (2.5, 8 MHz) and high (12.5, 25, 30 MHz) frequencies in a pressure threshold-dependent manner that is advantageous for amplitude modulation (AM) imaging. Here, we implement pressure-calibrated AM at high frequency on a commercial preclinical array system to enhance sensitivity to nonlinear scattering of three phospholipid-based NB formulations. With this approach, improvements in contrast to tissue ratio relative to B-mode between 12.4 and 22.8 dB are demonstrated in a tissue-mimicking phantom, and between 6.7 and 14.8 dB in vivo.


Assuntos
Meios de Contraste , Diagnóstico por Imagem , Imagens de Fantasmas , Ultrassonografia
13.
Theranostics ; 10(25): 11690-11706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052241

RESUMO

Background: There has been growing interest in nanobubbles for their potential to extend bubble-mediated ultrasound approaches beyond that of their larger microbubble counterparts. In particular, the smaller scale of nanobubbles may enable them to access the tumor extravascular compartment for imaging and therapy in closer proximity to cancer cells. Compelling preliminary demonstrations of the imaging and therapeutic abilities of nanobubbles have thus emerged, with emphasis on their ability to extravasate. However, studies to date rely on indirect histologic evidence that cannot confirm whether the structures remain intact beyond the vasculature - leaving their extravascular potential largely untapped. Methods: Nanobubble acoustic scattering was assessed using a recently reported ultra-stable formulation at low concentration (106 mL-1) and frequency (1 MHz), over a range of pressures (100-1500 kPa) in a channel phantom. The pressure-dependent response was utilized as a basis for in vivo experiments where ultrasound transmitters and receivers were integrated into a window chamber for simultaneous intravital multiphoton microscopy and acoustic monitoring in tumor-affected microcirculation. Microscopy and acoustic data were utilized to assess passive and active delivery of nanobubbles and determine whether they remained intact beyond the vasculature. Results: Nanobubbles exhibit pressure-dependent nonlinear acoustic scattering. Nanobubbles are also found to have prolonged acoustic vascular pharmacokinetics, and passively extravasate intact into tumors. Ultrasound stimulation of nanobubbles is shown to actively enhance the delivery of both intact nanobubbles and shell material, increasing their spatial bioavailability deeper into the extravascular space. A range of acute vascular effects were also observed. Conclusion: This study presents the first direct evidence that nanobubbles passively and actively extravasate intact in tumor tissue, and is the first to directly capture acute vascular events from ultrasound-stimulation of nanobubbles. The insights gained here demonstrate an important step towards unlocking the potential of nanobubbles and extending ultrasound-based applications.


Assuntos
Meios de Contraste/administração & dosagem , Microbolhas , Microscopia Acústica/métodos , Nanopartículas/administração & dosagem , Neoplasias/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias/irrigação sanguínea , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Artigo em Inglês | MEDLINE | ID: mdl-29148219

RESUMO

The development of encapsulated microbubbles (~1-6 µm) has expanded the utility of ultrasound from soft tissue anatomical imaging to not only functional intravascular imaging, but therapeutic interventions, with compelling studies of elicited biological effects. The large diameter of these bubbles has confined their utility to the vasculature, but converging interdisciplinary research pathways are giving rise to new submicron ultrasound contrast agents capable of extending their effects beyond the vascular compartment. This article reviews the status and prospects of exogenous agents including nanobubbles, echogenic liposomes, gas vesicles, cavitation seeds, and nanodroplets, and assesses outstanding criticisms preventing their advance. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Meios de Contraste , Lipossomos , Microbolhas , Nanoestruturas , Ultrassonografia , Animais , Humanos , Nanomedicina , Tamanho da Partícula
15.
Phys Med Biol ; 63(21): 215001, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30272572

RESUMO

Nanobubbles hold potential for expanding utility of ultrasound contrast-based applications to extravascular targets, but their acoustic response and the effects of the surrounding environment remain relatively unexplored. Here we investigate the dynamics of porphyrin-encapsulated nanobubbles (diameter <0.4 µm; 106 ml-1) at clinically relevant frequencies (2.5 MHz and 8 MHz) as a function of pressure (0.1-1.0 MPa) in vessel- and tissue-mimicking phantoms to gain an understanding of nanobubble behaviour in intra- and extravascular compartments. The results provide the first direct observation that nanobubbles can initiate nonlinear scattering, and that they do so in a pressure-dependent manner. It is further demonstrated that while nanobubbles in confining media require higher pressures for nonlinearities and demonstrate reduced scattering, they can exhibit sustained and non-destructive cavitation. Bubble models are then used to gain mechanistic insights into experimentally observed nanobubble dynamics and confirm sensitivity to nonlinear shell rheology, particularly to radially-dependent surface tension and the characteristic time constant for shear-thinning.


Assuntos
Vesículas Extracelulares/química , Microvasos/química , Nanoestruturas/química , Imagens de Fantasmas , Porfirinas/química , Meios de Contraste , Humanos , Espalhamento de Radiação
16.
Tomography ; 2(4): 325-333, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30042966

RESUMO

Dynamic contrast-enhanced (DCE)-MRI metrics are evaluated against volumetric DCE-CT quantitative parameters as a standard for tracer-kinetic validation using a common 4-dimensional temporal dynamic analysis platform in tumor perfusion measurements following stereotactic radiosurgery (SRS) for brain metastases. Patients treated with SRS as part of Research Ethics Board-approved clinical trials underwent volumetric DCE-CT and DCE-MRI at baseline, then at 7 and 21 days after SRS. Temporal dynamic analysis was used to create 3-dimensional pharmacokinetic parameter maps for both modalities. Individual vascular input functions were selected for DCE-CT and a population function was used for DCE-MRI. Semiquantitative and pharmacokinetic DCE parameters were assessed using a modified Tofts model within each tumor at every time point for both modalities for characterization of perfusion and capillary permeability, as well as their dependency on precontrast relaxation times (TRs), T10, and input function. Direct voxel-to-voxel Pearson analysis showed statistically significant correlations between CT and magnetic resonance which peaked at day 7 for Ktrans (R = 0.74, P ≤ .0001). The strongest correlation to DCE-CT measurements was found with DCE-MRI analysis using voxel-wise T10 maps (R = 0.575, P < .001) instead of assigning a fixed T10 value. Comparison of histogram features showed statistically significant correlations between modalities over all tumors for median Ktrans (R = 0.42, P = .01), median area under the enhancement curve (iAUC90) (R = 0.55, P < .01), and median iAUC90 skewness (R = 0.34, P = .03). Statistically significant, strong correlations were found for voxel-wise Ktrans, iAUC90, and ve values between DCE-CT and DCE-MRI. For DCE-MRI, the implementation of voxel-wise T10 maps plays a key role in ensuring the accuracy of heterogeneous pharmacokinetic maps.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa