Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 99(5): 399-411, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33688039

RESUMO

NMDA receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic currents. These receptors are involved in several important brain functions, including learning and memory, and have also been implicated in neuropathological conditions and acute central nervous system injury, which has driven therapeutic interest in their modulation. The EU1794 series of positive and negative allosteric modulators of NMDA receptors has structural determinants of action near the preM1 helix that is involved in channel gating. Here, we describe the effects of the negative allosteric modulator EU1794-4 on GluN1/GluN2A channels studied in excised outside-out patches. Coapplication of EU1794-4 with a maximally effective concentration of glutamate and glycine increases the fraction of time the channel is open by nearly 1.5-fold, yet reduces single-channel conductance by increasing access of the channel to several subconductance levels, which has the net overall effect of reducing the macroscopic current. The lack of voltage-dependence of negative modulation suggests this is unrelated to a channel block mechanism. As seen with other NMDA receptor modulators that reduce channel conductance, EU1794-4 also reduces the Ca2+ permeability relative to monovalent cations of GluN1/GluN2A receptors. We conclude that EU1794-4 is a prototype for a new class of NMDA receptor negative allosteric modulators that reduce both the overall current that flows after receptor activation and the flux of Ca2+ ion relative to monovalent cations. SIGNIFICANCE STATEMENT: NMDA receptors are implicated in many neurological conditions but are challenging to target given their ubiquitous expression. Several newly identified properties of the negative allosteric modulator EU1794-4, including reducing Ca2+ flux through NMDA receptors and attenuating channel conductance, explain why this modulator reduces but does not eliminate NMDA receptor function. A modulator with these properties could have therapeutic advantages for indications in which attenuation of NMDA receptor function is beneficial, such as neurodegenerative disease and acute injury.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Cálcio/metabolismo , Permeabilidade/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Células HEK293 , Humanos , Xenopus laevis
2.
Org Biomol Chem ; 19(33): 7234-7245, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34387294

RESUMO

Indolizines and pyrazolo[1,5-a]pyridines were prepared via [3 + 2]-cycloaddition of pyridinium ylides to 1-chloro-2-nitrostyrenes. The synthesized molecules were evaluated for antiproliferative activities against a BE(2)-C neuroblastoma cell line with several compounds decreasing the viability of cancer cells. Indolizine 9db showed higher potency than that of all-trans-retinoic acid, an approved cancer drug. Mechanistically, it was found to inhibit tubulin polymerization and it is thus proposed that the discovered chemistry can be exploited for the development of novel microtubule-targeting anticancer agents.


Assuntos
Moduladores de Tubulina
3.
Bioorg Med Chem Lett ; 30(23): 127539, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919013

RESUMO

Nucleotide prodrugs are of great clinical interest for treating a variety of viral infections due to their ability to target tissues selectively and to deliver relatively high concentrations of the active nucleotide metabolite intracellularly. However, their clinical successes have been limited, oftentimes due to unwanted in vivo metabolic processes that reduce the quantities of nucleoside triphosphate that reach the site of action. In an attempt to circumvent this, we designed novel nucleosides that incorporate a sterically bulky group at the 5'-carbon of the phosphoester prodrug, which we reasoned would reduce the amounts of non-productive PO bond cleavage back to the corresponding nucleoside by nucleotidases. Molecular docking studies with the NS5B HCV polymerase suggested that a nucleotide containing a 5'-methyl group could be accommodated. Therefore, we synthesized mono- and diphosphate prodrugs of 2',5'-C-dimethyluridine stereoselectively and evaluated their cytotoxicity and anti-HCV activity in the HCV replicon assay. All four prodrugs exhibited anti-HCV activity with IC50 values in the single digit micromolar concentrations, with the 5'(R)-C-methyl prodrug displaying superior potency relative to its 5'(S)-C-methyl counterpart. However, when compared to the unmethylated prodrug, the potency is poorer. The poorer potency of these prodrugs may be due to unfavorable steric interactions of the 5'-C-methyl group in the active sites of the kinases that catalyze the formation of active triphosphate metabolite.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Pró-Fármacos/farmacologia , Nucleotídeos de Uracila/farmacologia , Antivirais/síntese química , Antivirais/metabolismo , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Ligação Proteica , Nucleotídeos de Uracila/síntese química , Nucleotídeos de Uracila/metabolismo , Proteínas não Estruturais Virais/metabolismo
4.
J Chem Inf Model ; 58(8): 1544-1552, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29953819

RESUMO

HIV resistance emerging against antiretroviral drugs represents a great threat to the continued prolongation of the lifespans of HIV-infected patients. Therefore, methods capable of predicting resistance susceptibility in the development of compounds are in great need. By targeting the major reverse transcription residues Y181, K103, and L100, we used the biological activities of compounds against these enzymes and the wild-type reverse transcriptase to create Naïve Bayes Networks. Through this machine learning approach, we could predict, with high accuracy, whether a compound would be susceptible to a loss of potency due to resistance. Also, we could perfectly predict retrospectively whether compounds would be susceptible to both a K103 mutant RT and a Y181 mutant RT. In the study presented here, our method outperformed a traditional molecular mechanics approach. This method should be of broad interest beyond drug discovery efforts, and serves to expand the utility of machine learning for the prediction of physical, chemical, or biological properties using the vast information available in the literature.


Assuntos
Descoberta de Drogas/métodos , Farmacorresistência Viral , Transcriptase Reversa do HIV/genética , Aprendizado de Máquina , Mutação Puntual , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Teorema de Bayes , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Modelos Biológicos
5.
Bioorg Med Chem ; 26(21): 5730-5741, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30391094

RESUMO

Research has indicated that N-myristoyl transferase, an enzyme that catalyzes the addition of a myristate group to the N-terminal glycine residues of proteins, is involved in the myristoylation of more than 100 proteins. Genetic knockdown of the enzyme proved detrimental for the viability of the parasite P. knowlesi. A crystal structure of P. vivax N-myristoyl transferase (pvNMT), containing a 3-methyl benzofuran ligand has made it possible to assess key amino acid residue-ligand interactions. We synthesized five libraries of 6,5-fused heterocycles to establish the importance of the heterocycles as core scaffolds, as well as introduced various aromatic amides and esters to determine which carbonylic group affects the potency of each heterocyclic antiplasmodial agent.


Assuntos
Antimaláricos/farmacologia , Benzimidazóis/farmacologia , Benzoxazóis/farmacologia , Indóis/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tiofenos/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Benzoxazóis/síntese química , Benzoxazóis/química , Indóis/síntese química , Indóis/química , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
6.
Bioorg Med Chem Lett ; 26(15): 3700-4, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287366

RESUMO

The development of novel anti-HIV agents remains an important medicinal chemistry challenge given that no cure for the disease is imminent, and the continued use of current NNRTIs inevitably leads to problems associated with resistance. Inspired by the pyrazole-containing NNRTI lersivirine (LSV), we embarked upon a study to establish whether 1,2,3-triazole heterocycles could be used as a new scaffold for the creation of novel NNRTIs. An especially attractive feature of triazoles used for this purpose is the versatility in accessing variously functionalised systems using either the thermally regulated Huisgen cycloaddition, or the related 'click' reaction. Employing three alternative forms of these reactions, we were able to synthesise a range of triazole compounds and evaluate their efficacy in a phenotypic HIV assay. To our astonishment, even compounds closely mimicking LSV were only moderately effective against HIV.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Triazóis/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Química Click , Ciclização , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
7.
Bioorg Med Chem Lett ; 26(6): 1580-1584, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876929

RESUMO

In a previous communication we described a series of indole based NNRTIs which were potent inhibitors of HIV replication, both for the wild type and K103N strains of the virus. However, the methyl ether functionality on these compounds, which was crucial for potency, was susceptible to acid promoted indole assisted SN1 substitution. This particular problem did not bode well for an orally bioavailable drug. Here we describe bioisosteric replacement of this problematic functional group, leading to a series of compounds which are potent inhibitors of HIV replication, and are acid stable.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , HIV/enzimologia , Indóis/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Sulfetos/farmacologia , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , Indóis/síntese química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Sulfetos/síntese química , Sulfetos/química , Replicação Viral/efeitos dos fármacos
8.
Bioorg Med Chem ; 24(12): 2716-24, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27157005

RESUMO

Seventeen silyl- and trityl-modified (5'-O- and 3',5'-di-O-) nucleosides were synthesized with the aim of investigating the in vitro antiproliferative activities of these nucleoside derivatives. A subset of the compounds was evaluated at a fixed concentration of 100µM against a small panel of tumor cell lines (HL-60, K-562, Jurkat, Caco-2 and HT-29). The entire set was also tested at varying concentrations against two human glioma lines (U373 and Hs683) to obtain GI50 values, with the best results being values of ∼25µM.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Nucleosídeos/síntese química , Relação Estrutura-Atividade
9.
Bioorg Med Chem ; 23(15): 4163-4171, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26174655

RESUMO

The synthesis and in vitro evaluation of novel triazole-linked chloroquinoline derivatives as potential antiplasmodial agents against Plasmodium falciparum is reported. The 15 synthesized target compounds were obtained by means of a copper(I)-mediated click reaction between a variety of 1,2- and 1,3-azidoamines and 7-chloro-N-(prop-2-yn-1-yl)quinolin-4-amine in moderate to good yields (53-85%). The compounds were screened for antiplasmodial activity against NF54 chloroquine-sensitive and Dd2 chloroquine-resistant strains, alongside chloroquine and artesunate as reference compounds. Six of the test compounds revealed a 3-5 fold increase in antiplasmodial activity against chloroquine-resistant strain Dd2 compared to chloroquine. Among the six compounds with good antiplasmodial activity, a reduced cross-resistance relative to artesunate (>3 fold in comparison to chloroquine) was observed, mainly in derivatives that incorporated chloroquine-resistance reversing pharmacophores. A general trend for reduced chloroquine cross-resistance was also detected among 12 out of the 15 compounds tested.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Cloroquina/química , Plasmodium falciparum/efeitos dos fármacos , Triazóis/química , Antimaláricos/síntese química , Artemisininas/farmacologia , Artesunato , Química Click , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Medicamentos/efeitos dos fármacos , Estrutura Molecular
10.
Angew Chem Int Ed Engl ; 54(35): 10313-6, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26110718

RESUMO

Targeting and stabilizing distinct kinase conformations is an instrumental strategy for dissecting conformation-dependent signaling of protein kinases. Herein the structure-based design, synthesis, and evaluation of pleckstrin homology (PH) domain-dependent covalent-allosteric inhibitors (CAIs) of the kinase Akt is reported. These inhibitors bind covalently to a distinct cysteine of the kinase and thereby stabilize the inactive kinase conformation. These modulators exhibit high potency and selectivity, and represent an innovative approach for chemical biology and medicinal chemistry research.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Ligação Competitiva , Humanos , Modelos Moleculares
11.
Bioorg Med Chem Lett ; 24(18): 4376-4380, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25176191

RESUMO

The human immunodeficiency virus (HIV) pandemic remains a significant problem, especially in developing nations where the social and economic impacts are severe. Until a cure or vaccine for the disease is found, a constant supply of new compounds to fill the drug development pipeline is a requirement, given the tendency for the virus to rapidly develop resistance to current therapies. Here we disclose our efforts to improve upon the efficacy of cyclopropyl-indole derivatives developed as NNRTIs in our laboratories. To this end, modifications to the functionality occupying the small Val179 pocket have resulted in nearly two orders of magnitude increase in potency.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , Indóis/química , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 24(3): 923-7, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24393582

RESUMO

As a continuation of the studies aimed at the development of new anticancer agents derived from the Amaryllidaceae alkaloid lycorine, 35 C1,C2-ether analogues of this natural product were synthesized. The compounds were evaluated for antiproliferative activities in vitro in a panel of tumor cell lines with varied levels of apoptosis resistance. A strong correlation between the compound lipophilicity and anticancer activity was observed, indicating that cell permeability properties must be an important determinant in the design of lycorine-based anticancer agents. A theoretical docking model, consistent with the experimental observations, is presented.


Assuntos
Alcaloides/química , Alcaloides de Amaryllidaceae/química , Apoptose/efeitos dos fármacos , Éteres/química , Éteres/farmacologia , Liliaceae/química , Fenantridinas/química , Alcaloides/farmacologia , Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Lipídeos/química , Modelos Moleculares , Estrutura Molecular , Fenantridinas/farmacologia , Solubilidade
13.
J Med Chem ; 67(12): 9950-9975, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38865195

RESUMO

To improve their aqueous solubility characteristics, water-solubilizing groups were added to some antiproliferative, rigidin-inspired 7-deazahypoxanthine frameworks after molecular modeling seemed to indicate that structural modifications on the C7 and/or C8 phenyl groups would be beneficial. To this end, two sets of 7-deazahypoxanthines were synthesized by way of a multicomponent reaction approach. It was subsequently determined that their antiproliferative activity against HeLa cells was retained for those derivatives with a glycol ether at the 4'-position of the C8 aryl ring system, while also significantly improving their solubility behavior. The best of these compounds were the equipotent 6-[4-(2-ethoxyethoxy)benzoyl]-2-(pent-4-yn-1-yl)-5-phenyl-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 33 and 6-[4-(2-ethoxyethoxy)benzoyl]-5-(3-fluorophenyl)-2-(pent-4-yn-1-yl)-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 59. Similarly to the parent 1, the new derivatives were also potent inhibitors of tubulin assembly. In treated HeLa cells, live cell confocal microscopy demonstrated their impact on microtubulin dynamics and spindle morphology, which is the upstream trigger of mitotic delay and cell death.


Assuntos
Antineoplásicos , Proliferação de Células , Humanos , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Solubilidade , Modelos Moleculares , Tubulina (Proteína)/metabolismo
14.
Chem Soc Rev ; 41(13): 4657-70, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22618809

RESUMO

The human immunodeficiency virus (HIV) causes AIDS (acquired immune deficiency syndrome), a disease in which the immune system progressively deteriorates, making sufferers vulnerable to all manner of opportunistic infections. Currently, world-wide there are estimated to be 34 million people living with HIV, with the vast majority of these living in sub-Saharan Africa. Therefore, an important research focus is development of new drugs that can be used in the treatment of HIV/AIDS. This review gives an overview of the disease and addresses the drugs currently used for treatment, with specific emphasis on new developments within the class of allosteric non-nucleoside reverse transcriptase inhibitors (NNRTIs).


Assuntos
Fármacos Anti-HIV/uso terapêutico , Descoberta de Drogas , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , Inibidores da Transcriptase Reversa/uso terapêutico , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , HIV/enzimologia , Infecções por HIV/enzimologia , Infecções por HIV/história , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , História do Século XX , História do Século XXI , Humanos , Modelos Moleculares , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia
15.
ACS Pharmacol Transl Sci ; 6(5): 702-709, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200809

RESUMO

5-Fluorouracil and 5-fluorouracil-based prodrugs have been used clinically for decades to treat cancer. Their anticancer effects are most prominently ascribed to inhibition of thymidylate synthase (TS) by metabolite 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP). However, 5-fluorouracil and FdUMP are subject to numerous unfavorable metabolic events that can drive undesired systemic toxicity. Our previous research on antiviral nucleotides suggested that substitution at the nucleoside 5'-carbon imposes conformational restrictions on the corresponding nucleoside monophosphates, rendering them poor substrates for productive intracellular conversion to viral polymerase-inhibiting triphosphate metabolites. Accordingly, we hypothesized that 5'-substituted analogs of FdUMP, which is uniquely active at the monophosphate stage, would inhibit TS while preventing undesirable metabolism. Free energy perturbation-derived relative binding energy calculations suggested that 5'(R)-CH3 and 5'(S)-CF3 FdUMP analogs would maintain TS potency. Herein, we report our computational design strategy, synthesis of 5'-substituted FdUMP analogs, and pharmacological assessment of TS inhibitory activity.

16.
ACS Med Chem Lett ; 14(10): 1434-1440, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849558

RESUMO

The SARS-CoV-2 main protease (Mpro) has been proven to be a highly effective target for therapeutic intervention, yet only one drug currently holds FDA approval status for this target. We were inspired by a series of publications emanating from the Jorgensen and Anderson groups describing the design of potent, non-peptidic, competitive SARS-CoV-2 Mpro inhibitors, and we saw an opportunity to make several design modifications to improve the overall pharmacokinetic profile of these compounds without losing potency. To this end, we created a focused virtual library using reaction-based enumeration tools in the Schrödinger suite. These compounds were docked into the Mpro active site and subsequently prioritized for synthesis based upon relative binding affinity values calculated by FEP+. Fourteen compounds were selected, synthesized, and evaluated both biochemically and in cell culture. Several of the synthesized compounds proved to be potent, competitive Mpro inhibitors with improved metabolic stability profiles.

17.
ChemMedChem ; 17(10): e202100776, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35170857

RESUMO

Akt is a protein kinase that has been implicated in the progression of cancerous tumours. A number of covalent allosteric Akt inhibitors are known, and based on these scaffolds, a small library of novel potential covalent allosteric imidazopyridine-based inhibitors was designed. The envisaged compounds were synthesised, with click chemistry enabling a modular approach to a number of the target compounds. The binding modes, potencies and antiproliferative activities of these synthesised compounds were explored, thereby furthering the structure activity relationship knowledge of this class of Akt inhibitors. Three novel covalent inhibitors were identified, exhibiting moderate activity against Akt1 and various cancer cell lines, potentially paving the way for future covalent allosteric inhibitors with improved properties.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt , Regulação Alostérica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 19(14): 4227-37, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21700466

RESUMO

During random screening of a small in-house library of compounds, certain substituted imidazo[1,2-a]pyridines were found to be weak allosteric inhibitors of HIV-1 reverse transcriptase (RT). A library of these compounds was prepared using the Groebke reaction and a subset of compounds prepared from 2-chlorobenzaldehyde, cyclohexyl isocyanide and a 6-substituted 2-aminopyridine showed good inhibitory activity in enzymatic (RT) and HIV anti-infectivity MAGI whole cell assays. The compound showing the best anti-HIV-1 IIIB whole cell activity (MAGI IC(50)=0.18 µM, IC(90)=1.06 µM), along with a good selectivity index (>800), was 2-(2-chlorophenyl)-3-(cyclohexylamino)imidazo[1,2-a]pyridine-5-carbonitrile 38.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Imidazóis/farmacologia , Piridinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/química , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 19(23): 7252-61, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22019045

RESUMO

As a continuation of our studies aimed at the development of a new cytostatic agent derived from an Amaryllidaceae alkaloid lycorine, we synthesized 32 analogues of this natural product. This set of synthetic analogues included compounds incorporating selective derivatization of the C1 versus C2 hydroxyl groups, aromatized ring C, lactamized N6 nitrogen, dihydroxylated C3-C3a olefin functionality, transposed olefin from C3-C3a to C2-C3 or C3a-C4, and C1 long-chain fatty esters. All synthesized compounds were evaluated for antiproliferative activities in vitro in a panel of tumor cell lines including those exhibiting resistance to proapoptotic stimuli and representing solid cancers associated with dismal prognoses, such as melanoma, glioblastoma, and non-small-cell lung cancer. Most active analogues were not discriminatory between cancer cells displaying resistance or sensitivity to apoptosis, indicating that these compounds are thus able to overcome the intrinsic resistance of cancer cells to pro-apoptotic stimuli. 1,2-Di-O-allyllycorine was identified as a lycorine analogue, which is 100 times more potent against a U373 human glioblastoma model than the parent natural product. Furthermore, a number of synthetic analogues were identified as promising for the forthcoming in vivo studies.


Assuntos
Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Fenantridinas/química , Fenantridinas/farmacologia , Alcaloides de Amaryllidaceae/síntese química , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/patologia , Fenantridinas/síntese química , Relação Estrutura-Atividade
20.
ACS Infect Dis ; 6(5): 922-929, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275393

RESUMO

A series of five benzimidazole-based compounds were identified using a machine learning algorithm as potential inhibitors of the respiratory syncytial virus (RSV) fusion protein. These compounds were synthesized, and compound 2 in particular exhibited excellent in vitro potency with an EC50 value of 5 nM. This new scaffold was then further refined leading to the identification of compound 44, which exhibited a 10-fold improvement in activity with an EC50 value of 0.5 nM.


Assuntos
Antivirais , Benzimidazóis/farmacologia , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão/antagonistas & inibidores , Antivirais/farmacologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa