Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 18(1): 441, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669530

RESUMO

BACKGROUND: Metastasis is the main cause of death for lung cancer patients. The ex vivo 4D acellular lung model has been shown to mimic this metastatic process. However, the main concern is the model's lack of cellular components of the tumor's microenvironment. In this study, we aim to determine if the intact lung microenvironment will still allow lung cancer metastasis to form. METHODS: We harvested a heart-lung block from a rat and placed it in a bioreactor after cannulating the pulmonary artery, trachea and tying the right main bronchus for 10-15 days without any tumor cells as a control group or with NSCLC (A549, H1299 or H460), SCLC (H69, H446 or SHP77) or breast cancer cell lines (MCF7 or MDAMB231) through the trachea. We performed lobectomy, H&E staining and IHC for human mitochondria to determine the primary tumor's growth and formation of metastatic lesions. In addition, we isolated circulating tumor cells (CTC) from the model seeded with GFP tagged cells. RESULTS: In the control group, no gross tumor nodules were found, H&E staining showed hyperplastic cells and IHC showed no staining for human mitochondria. All of the models seeded with cancer cell lines formed gross primary tumor nodules that had microscopic characteristics of human cancer cells on H&E staining with IHC showing staining for human mitochondria. CTC were isolated for those cells labeled with GFP and they were viable in culture. Finally, all cell lines formed metastatic lesions with cells stained for human mitochondria. CONCLUSION: The cellular ex vivo 4D model shows that human cancer cells can form a primary tumor, CTC and metastatic lesions in an intact cellular environment. This study suggests that the natural matrix scaffold is the only necessary component to drive metastatic progression and that cellular components play a role in modulating tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Pequenas/patologia , Neoplasias Pulmonares/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia , Ratos , Carga Tumoral
2.
J Surg Res ; 210: 181-187, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28457326

RESUMO

BACKGROUND: Breast cancer mortality is most common in cancer in women, and there are no ex vivo models that can capture the primary growth of tumor with fidelity to the in vivo tumor growth. In this study, we grew human breast cancer cell lines in an acellular lung matrix of the ex vivo four-dimensional lung model to determine if they form primary tumor and the extent to which they mimic the histology and characteristics of the human tumors. MATERIALS AND METHODS: Rat lungs were harvested, decellularized, and placed in a bioreactor. To study the primary tumor growth, we seeded the lung via the trachea with human breast cancer cells SUM159, MCF7, or MDMB231 and perfused the pulmonary artery with oxygenated media. Lobectomies were performed and processed for hematoxylin and eosin, Ki-67, caspase-3, estrogen receptor, and progesterone receptor antibodies. RESULTS: All three cell lines grew in the ex vivo four-dimensional model and formed perfusable tumor nodules with similar histology and morphology as the primary tumors. SUM159 and MDAMB231 showed higher proliferation and apoptotic indices than MCF7. In addition, MCF7 retained its estrogen receptor and progesterone receptor positivity, whereas SUM159 and MDAMB 231 did not have any staining. CONCLUSIONS: Overall, our study showed that human breast cancer cells can be grown on the ex vivo four-dimensional lung model, which then form primary tumor nodules that mimic the morphology and histology of the original tumor.


Assuntos
Neoplasias da Mama/patologia , Pulmão/patologia , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Reatores Biológicos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Técnicas In Vitro , Masculino , Invasividade Neoplásica , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa