Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bioorg Med Chem ; 78: 117137, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603398

RESUMO

In cancer cells, glutaminolysis is the primary source of biosynthetic precursors. Recent efforts to develop amino acid analogues to inhibit glutamine metabolism in cancer have been extensive. Our lab recently discovered many L-γ-methyleneglutamic acid amides that were shown to be as efficacious as tamoxifen or olaparib in inhibiting the cell growth of MCF-7, SK-BR-3, and MDA-MB-231 breast cancer cells after 24 or 72 h of treatment. None of these compounds inhibited the cell growth of nonmalignant MCF-10A breast cells. These L-γ-methyleneglutamic acid amides hold promise as novel therapeutics for the treatment of multiple subtypes of breast cancer. Herein, we report our synthesis and evaluation of two series of tert-butyl ester and ethyl ester prodrugs of these L-γ-methyleneglutamic acid amides and the cyclic metabolite and its tert-butyl esters and ethyl esters on the three breast cancer cell lines MCF-7, SK-BR-3, and MDA-MB-231 and the nonmalignant MCF-10A breast cell line. These esters were found to suppress the growth of the breast cancer cells, but they were less potent compared to the L-γ-methyleneglutamic acid amides. Pharmacokinetic (PK) studies were carried out on the lead L-γ-methyleneglutamic acid amide to establish tissue-specific distribution and other PK parameters. Notably, this lead compound showed moderate exposure to the brain with a half-life of 0.74 h and good tissue distribution, such as in the kidney and liver. Therefore, the L-γ-methyleneglutamic acid amides were then tested on glioblastoma cell lines BNC3 and BNC6 and head and neck cancer cell lines HN30 and HN31. They were found to effectively suppress the growth of these cancer cell lines after 24 or 72 h of treatment in a concentration-dependent manner. These results suggest broad applications of the L-γ-methyleneglutamic acid amides in anticancer therapy.


Assuntos
Neoplasias da Mama , Pró-Fármacos , Humanos , Feminino , Amidas/química , Pró-Fármacos/farmacologia , Ésteres/farmacologia , Ésteres/química , Aminoácidos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175448

RESUMO

Since aerobic glycolysis was first observed in tumors almost a century ago by Otto Warburg, the field of cancer cell metabolism has sparked the interest of scientists around the world as it might offer new avenues of treatment for malignant cells. Our current study claims the discovery of gnetin H (GH) as a novel glycolysis inhibitor that can decrease metabolic activity and lactic acid synthesis and displays a strong cytostatic effect in melanoma and glioblastoma cells. Compared to most of the other glycolysis inhibitors used in combination with the complex-1 mitochondrial inhibitor phenformin (Phen), GH more potently inhibited cell growth. RNA-Seq with the T98G glioblastoma cell line treated with GH showed more than an 80-fold reduction in thioredoxin interacting protein (TXNIP) expression, indicating that GH has a direct effect on regulating a key gene involved in the homeostasis of cellular glucose. GH in combination with phenformin also substantially enhances the levels of p-AMPK, a marker of metabolic catastrophe. These findings suggest that the concurrent use of the glycolytic inhibitor GH with a complex-1 mitochondrial inhibitor could be used as a powerful tool for inducing metabolic catastrophe in cancer cells and reducing their growth.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Fenformin , Glicólise , Glucose/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Linhagem Celular Tumoral
3.
Int J Cancer ; 138(1): 14-21, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25559768

RESUMO

In recent years, the knowledge about the control of tumor microenvironment has increased and emerged as an important player in tumorigenesis. The role of normal stromal cells in the tumor initiation and progression has brought our vision in to the forefront of cell-to-cell communication. In this review, we focus on the mechanism of communication between stromal and tumor cells, which is based on the exchange of extracellular vesicles (EVs). We describe several, evergrowing, pieces of evidence that EVs transfer messages through their miRNA, lipid, protein and nucleic acid contents. A better understanding of this sophisticated method of communication between normal cancer cells may lead to developing novel approaches for personalized diagnostics and therapeutics.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Animais , Transporte Biológico , Comunicação Celular , Vesículas Extracelulares/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Lipídeos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs , Metástase Neoplásica , Neoplasias/genética , Proteínas , Transdução de Sinais
4.
Mol Pharm ; 11(2): 417-27, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24380633

RESUMO

This study examines the antitumor potential of curcumin and C6 ceramide (C6) against osteosarcoma (OS) cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Three liposomal formulations were prepared: curcumin liposomes, C6 liposomes and C6-curcumin liposomes. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with curcumin liposomes alone. Importantly, C6-curcumin liposomes were found to be less toxic on untransformed primary human cells (human mesenchymal stem cells) in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. The efficiency of the preparations was tested in vivo using a human osteosarcoma xenograft assay. Using pegylated liposomes to increase the plasma half-life and tagging with folate (FA) for targeted delivery in vivo, a significant reduction in tumor size was observed with C6-curcumin-FA liposomes. The encapsulation of two water insoluble drugs, curcumin and C6, in the lipid bilayer of liposomes enhances the cytotoxic effect and validates the potential of combined drug therapy.


Assuntos
Ceramidas/administração & dosagem , Curcumina/administração & dosagem , Lipossomos/química , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ceramidas/química , Ceramidas/farmacologia , Curcumina/química , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Camundongos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nanopartículas/uso terapêutico
5.
Nanomedicine ; 8(4): 440-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21839055

RESUMO

The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-γ-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded γ-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. FROM THE CLINICAL EDITOR: Curcumin-loaded γ-cyclodextrin liposomes were demonstrated in vitro to have significant potential as delivery vehicles for the treatment of cancers of mesenchymal and epithelial origin. Differences between mechanisms of cell death were also evaluated.


Assuntos
Curcumina/farmacologia , Osteossarcoma/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , gama-Ciclodextrinas/farmacologia , Animais , Antineoplásicos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/ultraestrutura , Caspases/metabolismo , Linhagem Celular Tumoral , Curcumina/química , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Osteossarcoma/ultraestrutura , Transplante Heterólogo , gama-Ciclodextrinas/química
6.
Eur J Med Chem ; 227: 113891, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34656042

RESUMO

TumorSelect® is an anticancer technology that combines cytotoxics, nanotechnology, and knowledge of human physiology to develop innovative therapeutic interventions with minimal undesirable side effects commonly observed in conventional chemotherapy. Tumors have a voracious appetite for cholesterol which facilitates tumor growth and fuels their proliferation. We have transformed this need into a stealth delivery system to disguise and deliver anticancer drugs with the assistance of both the human body and the tumor cell. Several designer prodrugs are incorporated within pseudo-LDL nanoparticles, which carry them to tumor tissues, are taken up, internalized, transformed into active drugs, and inhibit cancer cell proliferation. Highly lipophilic prodrug conjugates of paclitaxel suitable for incorporation into the pseudo-LDL nanoparticles of the TumorSelect® delivery vehicle formulation were designed, synthesized, and evaluated in the panel of 24-h NCI-60 human tumor cell line screening to demonstrate the power of such an innovative approach. Taxane prodrugs, viz., ART-207 was synthesized by tethering paclitaxel to lipid moiety with the aid of a racemic solketal as a linker in cost-effective, simple, and straightforward synthetic transformations. In addition to the typical 24-h NCI screening protocol, these compounds were assessed for growth inhibition or killing of ovarian cell lines for 48 and 72h-time intervals and identified the long-lasting effectiveness of these lipophilic prodrugs. All possible, enantiomerically pure isomers of ART-207 were also synthesized, and cytotoxicities were biosimilar to racemic ART-207, suggesting that enantiopurity of linker has a negligible effect on cell proliferation. To substantiate further, ART-207 was evaluated for its in vivo tumor reduction efficacy by studying the xenograft model of ovarian cancer grown in SCID mice. Reduced weight loss (a measure of toxicity) in the ART-207 group was observed, even though it was dosed at 2.5x the paclitaxel equivalent of Abraxane®. As a result, our delineated approach is anticipated to improve patient quality of life, patient retention in treatment regimes, post-treatment rapid recovery, and overall patient compliance without compromising the efficacy of the cytotoxic promiscuous natural products.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Paclitaxel/farmacologia , Pró-Fármacos/farmacologia , Animais , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Camundongos SCID , Conformação Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Paclitaxel/síntese química , Paclitaxel/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Carcinogenesis ; 32(7): 964-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21317300

RESUMO

Recent studies have implicated multipotential mesenchymal stem cells (MSCs) as an aid to breast cancer cell proliferation and metastasis, partly as a result of the MSCs secretome. As the tumor gets beyond 2 mm in diameter, the stromal cells could undergo starvation due to the lack of sufficient nutrients in solid tumor microenvironment. In this study, we investigated the survival mechanisms used by stressed stromal cells in breast cancers. We used serum-deprived mesenchymal stem cells (SD-MSCs) and MCF-7 breast cancer cells as model system with a hypothesis that stromal cells in the nutrient-deprived core utilize survival mechanisms for supporting surrounding cells. We tested this hypothesis using in vivo tumor xenografts in immunodeficient mice, which indicated that SD-MSCs supported MCF-7 tumor growth by protection from apoptosis. Histochemical assays showed that SD-MSCs-injected tumors exhibited higher cellularity, decreased apoptosis and decreased differentiation. Beclin-1 staining indicated autophagic areas surrounded by actively proliferating cells. Furthermore, in vitro studies demonstrate that SD-MSCs survive using autophagy and secrete paracrine factors that support tumor cells following nutrient/serum deprivation. Western blot and immunocytochemistry analysis of SD-MSCs demonstrated upregulation and perinuclear relocation of autophagy key regulators such as beclin-1, ATG10, ATG12, MAP-LC3 and lysosomes. Electron microscopic analysis detected a time-dependent increase in autophagosome formation and HDAC6 activity assays indicated the upregulation of autophagy. Taken together, these data suggest that under nutrient-deprived conditions that can occur in solid tumors, stromal cells utilize autophagy for survival and also secrete anti-apoptotic factors that can facilitate solid tumor survival and growth.


Assuntos
Autofagia , Células-Tronco Mesenquimais/imunologia , Neoplasias/patologia , Células Estromais/patologia , Animais , Apoptose/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Células Cultivadas , Meios de Cultura Livres de Soro , Feminino , Humanos , Camundongos , Camundongos SCID , Neoplasias/imunologia
8.
Proc Natl Acad Sci U S A ; 105(47): 18372-7, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19011087

RESUMO

We observed that microRNAs (miRNAs) that regulate differentiation in a variety of simpler systems also regulate differentiation of human multipotent stromal cells (hMSCs) from bone marrow. Differentiation of hMSCs into osteoblasts and adipocytes was inhibited by using lentiviruses expressing shRNAs to decrease expression of Dicer and Drosha, two enzymes that process early transcripts to miRNA. Expression analysis of miRNAs during hMSC differentiation identified 19 miRNAs that were up-regulated during osteogenic differentiation and 20 during adipogenic differentiation, 11 of which were commonly up-regulated in both osteogenic and adipogenic differentiation. In silico models predicted that five of the up-regulated miRNAs targeted leukemia inhibitory factor (LIF) expression. The prediction was confirmed for two of the miRNAs, hsa-mir 199a and hsa-mir346, in that over-expression of the miRNAs decreased LIF secretion by hMSCs. The results demonstrate that differentiation of hMSCs is regulated by miRNAs and that several of these miRNAs target LIF.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Fator Inibidor de Leucemia/metabolismo , MicroRNAs/fisiologia , Células-Tronco Multipotentes/citologia , Células Estromais/citologia , Tecido Adiposo/citologia , Técnicas de Silenciamento de Genes , Humanos , RNA Mensageiro/genética , Ribonuclease III/genética
9.
Breast Cancer Res Treat ; 121(2): 293-300, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19597705

RESUMO

Adult human mesenchymal stem cells (hMSCs) have been shown to home to sites of breast cancer and integrate into the tumor stroma. We demonstrate here the effect of hMSCs on primary breast tumor growth and the progression of these tumors to hormone independence. Co-injection of bone marrow-derived hMSCs enhances primary tumor growth of the estrogen receptor-positive, hormone-dependent breast carcinoma cell line MCF-7 in the presence or absence of estrogen in SCID/beige mice. We also show hormone-independent growth of MCF-7 cells when co-injected with hMSCs. These effects were found in conjunction with increased immunohistochemical staining of the progesterone receptor in the MCF-7/hMSC tumors as compared to MCF-7 control tumors. This increase in PgR expression indicates a link between MCF-7 cells and MSCs through ER-mediated signaling. Taken together, our data reveal the relationship between tumor microenvironment and tumor growth and the progression to hormone independence. This tumor stroma-cell interaction may provide a novel target for the treatment of estrogen receptor-positive, hormone-independent, and endocrine-resistant breast carcinoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Células-Tronco Mesenquimais/patologia , Animais , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos SCID , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 8(1): 1720, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379063

RESUMO

Human mesenchymal stem/stromal cells (hMSCs) provide support for cancer progression, partly through their secretome that includes extracellular vesicles (EVs). Based on deep-sequencing of small RNA from EVs of MSCs, we now report the characterization of novel small RNA, named n-miR-G665, which exhibits typical properties of miRNAs. n-miR-G665 sequence is conserved and expressed in most cell types. Knockdown studies using anti-agomirs and shRNA studies demonstrated that n-miR-G665 plays an important role in cell proliferation. Functional assays to reveal the targets of n-miR-G665 showed that polycomb protein Suz12 is regulated by n-miR-G665, which in turn regulates the expression of n-miR-G665 through feedback loop mechanism. These data shed light on a previously unknown novel feedback regulatory mechanism for controlling Suz12 expression regulated by previously not described miRNA, which may highlight a new therapeutic approach to control the polycomb repressor complex 2 activity in cancers.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/metabolismo , Complexo Repressor Polycomb 2/biossíntese , Linhagem Celular , Proliferação de Células , Vesículas Extracelulares/química , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , MicroRNAs/isolamento & purificação , Proteínas de Neoplasias , Fatores de Transcrição
11.
J Bone Miner Res ; 22(9): 1338-49, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17547532

RESUMO

UNLABELLED: In this study, we used multipotential MSCs and microarray assays to follow the changing patterns of gene expression as MSCs were differentiated to osteoblasts. We analyzed co-expressed gene groups to identify new targets for known transcription factor VDR during differentiation. The roles of two genes (histamine receptor H1 and dermatopontin) as downstream targets for the VDR were confirmed by gel electromotility shift, siRNA inhibition, and chromatin immunoprecipitation assays. INTRODUCTION: Osteogenesis is stringently controlled by osteoblast-specific signaling proteins and transcription factors. Mesenchymal stem or multipotential stromal cells from bone marrow (MSCs) have been shown to differentiate into osteoblasts in the presence of vitamin D(3). MATERIALS AND METHODS: We used MSCs and microarray assays to follow the changing patterns of gene expression as MSCs were differentiated to osteoblasts. The data were analyzed with a previously developed strategy to identify new downstream targets of the vitamin D receptor (VDR), known osteogenesis transcription factor. Hierarchical clustering of the data identified 15 distinct patterns of gene expression. Three genes were selected that expressed in the same time-dependent pattern as osteocalcin, a known target for the VDR: histamine receptor H1 (HRH1), Spondin 2 (SPN), and dermatopontin (DPT). RT-PCR, electromotility shift, siRNA inhibition assays, and chromatin immunoprecipitation assays were used to analyze the role of VDR in activation of DPT and HRH1 during differentiation. RESULTS AND CONCLUSIONS: RT-PCR assays confirmed that the genes were expressed during differentiation of MSCs. The roles of two genes as downstream targets for the VDR were confirmed by gel electromotility shift and chromatin immunoprecipitation assays that showed the presence of VDR complex binding sequences. Overexpression of VDR in MG-63 osteosarcoma cells induced the expression of HRH1 and DPT. Inhibition studies with siRNA to DPT and HRH1 showed a decrease in MSC differentiation to osteogenic lineage. In addition, osteogenic differentiation of MSCs was inhibited by the HRH1 inhibitor mepyramine but not the HRH2 inhibitor ranitidine. In conclusion, we show that analysis of co-expressed gene groups is a good tool to identify new targets for known transcription factors.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Receptores de Calcitriol/fisiologia , Receptores Histamínicos H1/fisiologia , Sequência de Bases , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/genética , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas da Matriz Extracelular/genética , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Interferente Pequeno , Receptores Histamínicos H1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Front Biosci (Elite Ed) ; 9(1): 162-173, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27814597

RESUMO

It is well recognized that one of the major drawbacks of using traditional two dimensional cultures to model the living systems is inaccurately reflecting the physiological manner in which modulators, nutrients, oxygen, and metabolites are applied and removed. Moreover, the two dimensional culture system poorly reflects how different cell types interact with each other in the same microenvironment. Since the first global development of three dimensional (3D) cell culture techniques in the late 1960s, this last decade has seen an explosion of studies to promote 3D models in the fields of regenerative medicine and cancer. The recent surge of interest in 3D cell culture in cancer research is attributable to the interest in developing closer to real life models. The ability to include various cell types and extracellular components reflect more the physiological conditions of tumor microenvironment. In this short review, we will discuss different approaches of 3D culture system models and techniques with a focus on the 3D interactions of cancer cells with stromal cells in the goal to reevaluate old and develop new therapeutics.


Assuntos
Técnicas de Cultura de Células , Neoplasias/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Dispositivos Lab-On-A-Chip , Neoplasias de Tecido Conjuntivo/patologia , Neoplasias Epiteliais e Glandulares/patologia , Projetos de Pesquisa , Esferoides Celulares , Alicerces Teciduais , Células Tumorais Cultivadas , Microambiente Tumoral
13.
Oncotarget ; 8(66): 109861-109876, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29299114

RESUMO

Mesenchymal stromal cells (hMSCs) have been used to understand the stromal cell properties in solid tumors because of their ablity to differentiate into most cell types. We investigated the role of EVs from hMSCs (hMSC-EVs) in breast cancer metastasis using MDA-MB-231 parental cell line and organotropic sub-lines. We demonstrated that hMSC-EVs significantly suppressed the metastatic potential of the parental cell line when compared to their organotropic sublines. hMSC-EVs induce dormancy in the parental cell line but not in their organotropic sub-lines and miR-205 and miR-31 from EV cargo played a role. Further, Ubiquitin Conjugating Enzyme E2 N (UBE2N/Ubc13) - metastasis-regulating gene, is a target of these miRNAs and silencing of UBE2N/Ubc13 expression significantly suppressed migration, invasion, and proliferation of breast cancer cells. To summarize, hMSC-EVs support primary breast tumor progression but suppress the metastasis of breast cancer cells that are not organ-committed through the UBE2N/Ubc13 pathway and play a role in premetastic niche formation.

14.
Methods Mol Biol ; 1416: 159-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236671

RESUMO

Mesenchymal stem/stromal cells (MSCs) have been extensively investigated for their potential to regenerate tissue, to modulate the immune system, and their wound healing properties in over 350 clinical trials worldwide. MSCs from various tissues such as adipose, bone, and others are currently being studied in clinical trials in indications for ischemic, inflammatory, autoimmune, and degenerative disorders. As a result, numerous isolation protocols have been published. This chapter provides a simple protocol whereby a total of 80-100 million human MSCs, with an average viability greater than 90 %, can be produced from a relatively small (1-3 mL) bone marrow aspirate in 14-20 days using double stack culture chambers. MSCs were originally referred to as fibroblastoid colony forming cells because one of their characteristic features is adherence to tissue culture plastic and generation of colonies when plated at low densities. The efficiency with which they form colonies still remains an important assay for the quality of cell preparations. To assess the quality of cell preparations, two different colony forming unit (CFU) assays are also provided.


Assuntos
Ensaio de Unidades Formadoras de Colônias/métodos , Células-Tronco Mesenquimais/citologia , Contagem de Células , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos
15.
Curr Stem Cell Res Ther ; 11(2): 141-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26423301

RESUMO

Mesenchymal Stem/stromal cell (MSCs) transplantation procedures have been used since the 1960's to treat leukemia and other diseases, but due to the risks involved only patients with life threatening illnesses were typically subjected to the transplantation procedure until the last decade. Recent advancements in transplantation techniques have made it more feasible to use it for non-life-threatening diseases. However, the potential uses for stem cells are still limited by their rarity, and, in the case of allogeneic transplants, graft-vs.-host complications. An evolving alternative to conventional stem cell therapies is induced pluripotent stem-cell derived mesenchymal stem/stromal cells (iPSC- MSCs), which have a multi-lineage potential comparable to conventionally acquired MSCs with the added benefit of being less immunoreactive. However there are still many hurdles left to be overcome before they can be used regularly for personalized therapies. This review will focus on recent advancements that have been made regarding the role MSCs play in tumor development and the potential uses iPSC-MSCs may have in future cancer treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais/tendências , Células-Tronco Mesenquimais , Medicina de Precisão , Humanos
16.
Stem Cells Int ; 2016: 1073140, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26649044

RESUMO

Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies.

17.
Oncotarget ; 6(7): 4953-67, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25669974

RESUMO

Human mesenchymal stem/stromal cells (hMSCs) have been shown to support breast cancer cell proliferation and metastasis, partly through their secretome. hMSCs have a remarkable ability to survive for long periods under stress, and their secretome is tumor supportive. In this study, we have characterized the cargo of extracellular vesicular (EV) fraction (that is in the size range of 40-150nm) of serum deprived hMSCs (SD-MSCs). Next Generation Sequencing assays were used to identify small RNA secreted in the EVs, which indicated presence of tumor supportive miRNA. Further assays demonstrated the role of miRNA-21 and 34a as tumor supportive miRNAs. Next, proteomic assays revealed the presence of ≈150 different proteins, most of which are known tumor supportive factors such as PDGFR-ß, TIMP-1, and TIMP-2. Lipidomic assays verified presence of bioactive lipids such as sphingomyelin. Furthermore, metabolite assays identified the presence of lactic acid and glutamic acid in EVs. The co-injection xenograft assays using MCF-7 breast cancer cells demonstrated the tumor supportive function of these EVs. To our knowledge this is the first comprehensive -omics based study that characterized the complex cargo of extracellular vesicles secreted by hMSCs and their role in supporting breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Vesículas Extracelulares/patologia , Feminino , Xenoenxertos , Humanos , Metabolismo dos Lipídeos , Células MCF-7 , Camundongos , Camundongos Nus , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Proteoma/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Med ; 3(4): 796-811, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24802970

RESUMO

Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/metabolismo , Integrina alfa6/metabolismo , Osteossarcoma/metabolismo , Adolescente , Adulto , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Movimento Celular , Proliferação de Células , Criança , Cisplatino/farmacologia , Progressão da Doença , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Masculino , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/patologia , Cultura Primária de Células , Células Tumorais Cultivadas
19.
Methods Mol Biol ; 698: 11-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431507

RESUMO

In recent years, human mesenchymal stem cells (multipotential stromal cells) from bone marrow (hMSCs) have attracted enormous attention owing to their broad therapeutic potential. One of the problems in the overall therapeutic use of hMSCs has been the significant variability in the culture conditions used for their isolation and expansion. Since the seminal publications by Friedenstein and colleagues, the isolation and expansion of mesenchymal stromal cells (MSCs) from bone marrow have been of interest to several laboratories. As a result, numerous isolation protocols have been published. This chapter provides a simple protocol whereby a total of 80-100 million human MSCs, with an average viability greater than 90%, can be produced from a relatively small (1-3 mL) bone marrow aspirate in 14-20 days using double stacks culture chambers. MSCs were originally referred to as fibroblastoid colony forming cells because one of their characteristic features is adherence to tissue culture plastic and generation of colonies when plated at low densities. The efficiency with which they form colonies still remains an important assay for the quality of cell preparations. To assess the quality of cell preparations, two different colony forming unit (CFU) assays are also provided.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Ensaio de Unidades Formadoras de Colônias , Fibroblastos/citologia , Humanos , Análise de Célula Única
20.
Int J Biochem Cell Biol ; 43(11): 1563-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21794839

RESUMO

Recently we demonstrated that the miRNA regulate human mesenchymal stem cells (hMSCs) differentiation. To determine the role of the miRNA pathway in hMSCs proliferation, Drosha and Dicer knockdown hMSCs were generated using a lentiviral based tetracycline inducible shRNA. hMSCs with reduced Drosha expression had a significantly reduced proliferation rate, while hMSCs with reduced Dicer expression displayed a proliferation rate similar to untransduced cells. Cell cycle analysis identified that unlike Dicer knockdown, Drosha knockdown hMSCs contained an increased number of G1 phase cells, with a reduced level of cells in S phase, compared to controls. ELISAs of hMSCs revealed decreased levels of pRB and stable levels of total RB with Drosha knockdown. Two key regulators of the G1/S phase transition, cyclin dependent kinase inhibitor 2A (p16) and cyclin dependent kinase inhibitor 2B (p15), were increased in Drosha knockdown cells but not in Dicer knockdown. Transcripts of 28S and 18S rRNA were significantly reduced in Drosha knockdown hMSCs, with no change in rRNA levels in Dicer knockdown hMSCs. 45S pre-rRNA transcripts were not significantly different in either knockdown model. The above results indicate that Drosha modifies hMSCs proliferation through a miRNA independent mechanism, potentially by regulating rRNA processing.


Assuntos
Ciclo Celular/genética , RNA Helicases DEAD-box/deficiência , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , RNA Ribossômico/metabolismo , Ribonuclease III/deficiência , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , RNA Helicases DEAD-box/genética , Inativação Gênica , Vetores Genéticos , Humanos , Lentivirus , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III/genética , Transdução Genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa