Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Sci Technol ; 58(12): 5419-5429, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38390902

RESUMO

Traffic emissions are a dominant source of secondary organic aerosol (SOA) in urban environments. Though tailpipe exhaust has drawn extensive attention, the impact of non-tailpipe emissions on atmospheric SOA has not been well studied. Here, a closure study was performed combining urban tunnel experiments and dynamometer tests using an oxidation flow reactor in situ photo-oxidation. Results show a significant gap between field and laboratory research; the average SOA formation potential from real-world fleet is 639 ± 156 mg kg fuel-1, higher than the reconstructed result (188 mg kg fuel-1) based on dynamometer tests coupled with fleet composition inside the tunnel. Considering the minimal variation of SOA/CO in emission standards, we also reconstruct CO and find the critical role of high-emitting events in the real-world SOA burden. Different profiles of organic gases are detected inside the tunnel than tailpipe exhaust, such as more abundant C6-C9 aromatics, C11-C16 species, and benzothiazoles, denoting contributions from non-tailpipe emissions to SOA formation. Using these surrogate chemical compounds, we roughly estimate that high-emitting, evaporative emission, and asphalt-related and tire sublimation share 14, 20, and 10% of the SOA budget, respectively, partially explaining the gap between field and laboratory research. These experimental results highlight the importance of non-tailpipe emissions to atmospheric SOA.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Aerossóis/análise , Oxirredução
2.
Proc Natl Acad Sci U S A ; 117(24): 13294-13299, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32493751

RESUMO

Secondary organic aerosol (SOA) represents a major constituent of tropospheric fine particulate matter, with profound implications for human health and climate. However, the chemical mechanisms leading to SOA formation remain uncertain, and atmospheric models consistently underpredict the global SOA budget. Small α-dicarbonyls, such as methylglyoxal, are ubiquitous in the atmosphere because of their significant production from photooxidation of aromatic hydrocarbons from traffic and industrial sources as well as from biogenic isoprene. Current experimental and theoretical results on the roles of methylglyoxal in SOA formation are conflicting. Using quantum chemical calculations, we show cationic oligomerization of methylglyoxal in aqueous media. Initial protonation and hydration of methylglyoxal lead to formation of diols/tetrol, and subsequent protonation and dehydration of diols/tetrol yield carbenium ions, which represent the key intermediates for formation and propagation of oligomerization. On the other hand, our results reveal that the previously proposed oligomerization via hydration for methylglyoxal is kinetically and thermodynamically implausible. The carbenium ion-mediated mechanism occurs barrierlessly on weakly acidic aerosols and cloud/fog droplets and likely provides a key pathway for SOA formation from biogenic and anthropogenic emissions.

3.
Proc Natl Acad Sci U S A ; 117(8): 3960-3966, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041887

RESUMO

Although regional haze adversely affects human health and possibly counteracts global warming from increasing levels of greenhouse gases, the formation and radiative forcing of regional haze on climate remain uncertain. By combining field measurements, laboratory experiments, and model simulations, we show a remarkable role of black carbon (BC) particles in driving the formation and trend of regional haze. Our analysis of long-term measurements in China indicates declined frequency of heavy haze events along with significantly reduced SO2, but negligibly alleviated haze severity. Also, no improving trend exists for moderate haze events. Our complementary laboratory experiments demonstrate that SO2 oxidation is efficiently catalyzed on BC particles in the presence of NO2 and NH3, even at low SO2 and intermediate relative humidity levels. Inclusion of the BC reaction accounts for about 90-100% and 30-50% of the sulfate production during moderate and heavy haze events, respectively. Calculations using a radiative transfer model and accounting for the sulfate formation on BC yield an invariant radiative forcing of nearly zero W m-2 on the top of the atmosphere throughout haze development, indicating small net climatic cooling/warming but large surface cooling, atmospheric heating, and air stagnation. This BC catalytic chemistry facilitates haze development and explains the observed trends of regional haze in China. Our results imply that reduction of SO2 alone is insufficient in mitigating haze occurrence and highlight the necessity of accurate representation of the BC chemical and radiative properties in predicting the formation and assessing the impacts of regional haze.

4.
Proc Natl Acad Sci U S A ; 117(7): 3427-3432, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015109

RESUMO

High levels of ultrafine particles (UFPs; diameter of less than 50 nm) are frequently produced from new particle formation under urban conditions, with profound implications on human health, weather, and climate. However, the fundamental mechanisms of new particle formation remain elusive, and few experimental studies have realistically replicated the relevant atmospheric conditions. Previous experimental studies simulated oxidation of one compound or a mixture of a few compounds, and extrapolation of the laboratory results to chemically complex air was uncertain. Here, we show striking formation of UFPs in urban air from combining ambient and chamber measurements. By capturing the ambient conditions (i.e., temperature, relative humidity, sunlight, and the types and abundances of chemical species), we elucidate the roles of existing particles, photochemistry, and synergy of multipollutants in new particle formation. Aerosol nucleation in urban air is limited by existing particles but negligibly by nitrogen oxides. Photooxidation of vehicular exhaust yields abundant precursors, and organics, rather than sulfuric acid or base species, dominate formation of UFPs under urban conditions. Recognition of this source of UFPs is essential to assessing their impacts and developing mitigation policies. Our results imply that reduction of primary particles or removal of existing particles without simultaneously limiting organics from automobile emissions is ineffective and can even exacerbate this problem.


Assuntos
Material Particulado/química , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Oxirredução , Tamanho da Partícula , Temperatura
5.
Pharm Biol ; 61(1): 963-972, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357417

RESUMO

CONTEXT: Punicalagin has myocardial protection; the mechanism of punicalagin on ventricular remodeling (VR) after acute myocardial infarction (AMI) remains unclear. OBJECTIVE: These studies explore the role and mechanism of punicalagin in preventing and treating VR after AMI. MATERIALS AND METHODS: Molecular docking was used to predict the targets of punicalagin. After 2 weeks of AMI model, the SD rats were randomly divided into model, and punicalagin (200, 400 mg/kg, gavage) groups for 4 weeks. Thoracotomy with perforation but no ligature was performed on rats in control group. The protein expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis speck-like protein (ASC), caspase-1, gasdermin D (GSDMD), and GSDMD-N, the mRNA expression of NLRP3, caspase-1, GSDMD, interleukin-1ß (IL-1ß) and IL-18 were evaluated. RESULTS: Punicalagin had binding activities with NLRP3 (Vina score, -5.8), caspase-1 (Vina score, -6.7), and GSDMD (Vina score, -6.7). Punicalagin could improve cardiac function, alleviate cardiac pathological changes, minimize the excessive accumulation of collagen in the left ventricular myocardium (p < 0.01), and inhibit cardiomyocyte apoptosis (p < 0.01). Furthermore, punicalagin could inhibit the overexpression of NLRP3, caspase-1, and GSDMD via immunohistochemistry (p < 0.01). Punicalagin inhibited the protein levels of NLRP3, caspase-1, ASC, GSDMD, and GSDMD-N (p < 0.05, p < 0.01). Punicalagin reduced the mRNA expression of NLRP3, caspase-1, GSDMD, IL-1ß and IL-18 (p < 0.05, p < 0.01). CONCLUSIONS: Punicalagin may provide a useful treatment for the future myocardial protection.


Assuntos
Taninos Hidrolisáveis , Infarto do Miocárdio , Transdução de Sinais , Remodelação Ventricular , Taninos Hidrolisáveis/administração & dosagem , Animais , Ratos , Remodelação Ventricular/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Simulação de Acoplamento Molecular , Fibrose/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Apoptose/efeitos dos fármacos , Caspase 1/metabolismo
6.
Environ Res ; 212(Pt A): 113238, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35395235

RESUMO

Atmospheric aging of black carbon (BC) leads to changes in its physiochemical properties, exerting complex effects on environment and climate. In this study, we have conducted laboratory chamber experiments to investigate the effects of BC aging on its morphology, hygroscopicity and optical properties by exposing monodisperse fresh BC particles to ambient ubiquitous species of nitrogen dioxide (NO2), sulfur dioxide (SO2) and ammonia (NH3) in absence of UV light. We show a rapid aging from highly fractal to compacted aggregates for the monodisperse BC particles with an initial diameter of 150 nm, with decline in the dynamic shape factor (χ) from about 1.8 to nearly 1. The effective density of the monodisperse BC particles increases from ∼0.54 to 1.50 g cm-3 accordingly. The aging process leads to that the light scattering, absorption, and single scattering albedo of the monodisperse BC particles are strongly enhanced by factors of 7.0, 1.8 and 3.0 respectively. By comparing with the BC aging from other mechanisms, we reveal a critical role of the composition of the coating materials on BC in determining its light absorption enhancement. Moreover, due to strong water uptake capacity of the aged BC particles, the light absorption enhancement (Eabs) could be 40-60% higher at humid atmosphere compared with dry conditions. This BC aging process from NO2 oxidation of SO2 may occur commonly in polluted regions and thus considerably alter its effects on regional air quality and climate.


Assuntos
Carbono , Dióxido de Nitrogênio , Aerossóis/análise , Carbono/química , Fuligem , Molhabilidade
7.
Pharm Biol ; 60(1): 638-651, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35298357

RESUMO

CONTEXT: Shengmai injection (SMI) has been used to treat heart failure. OBJECTIVE: This study determines the molecular mechanisms of SMI against cardiotoxicity caused by doxorubicin (DOX). MATERIALS AND METHODS: In vivo, DOX (15 mg/kg) was intraperitoneally injected in model, Dex (dexrazoxane), SMI-L (2.7 mL/kg), SMI-M (5.4 mL/kg), and SMI-H (10.8 mL/kg) for 7 consecutive days. Hematoxylin-eosin (HE) and Masson staining were used to evaluate histological changes, and cardiomyocyte apoptosis was identified using TdT-mediated dUTP nick-end labelling (TUNEL). Enzymatic indexes were determined. mRNA and protein expressions were analysed through RT-qPCR and Western blotting. In vitro, H9c2 cells were divided into control group, model group (2 mL 1 µM DOX), SMI group, ML385 group, and SMI + ML385 group, the intervention lasted for 24 h. mRNA and protein expressions were analysed. RESULTS: SMI markedly improved cardiac pathology, decreased cardiomyocyte apoptosis, increased creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), decreased superoxide dismutase (SOD). Compared with the model group, the protein expression of nuclear factor erythroid2-related factor 2 (Nrf2) (SMI-L: 2.42-fold, SMI-M: 2.67-fold, SMI-H: 3.07-fold) and haem oxygenase-1(HO-1) (SMI-L: 1.64-fold, SMI-M: 2.01-fold, SMI-H: 2.19-fold) was increased and the protein expression of kelch-like ECH-associated protein 1 (Keap1) (SMI-L: 0.90-fold, SMI-M: 0.77-fold, SMI-H: 0.66-fold) was decreased in SMI groups and Dex group in vivo. Additionally, SMI dramatically inhibited apoptosis, decreased CK, LDH and MDA levels, and enhanced SOD activity. Our results demonstrated that SMI reduced DOX-induced cardiotoxicity via activation of the Nrf2/Keap1 signalling pathway. CONCLUSIONS: This study revealed a new mechanism by which SMI alleviates DOX-induced 45 cardiomyopathy by modulating the Nrf2/Keap1 signal pathway.


Assuntos
Doxorrubicina/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiotoxicidade/prevenção & controle , Células Cultivadas , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/química , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/fisiologia , Simulação de Acoplamento Molecular , Miocárdio/patologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
8.
Environ Sci Technol ; 55(4): 2189-2207, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33539077

RESUMO

Severe haze events with exceedingly high-levels of fine aerosols occur frequently over the past decades in the North China Plain (NCP), exerting profound impacts on human health, weather, and climate. The development of effective mitigation policies requires a comprehensive understanding of the haze formation mechanisms, including identification and quantification of the sources, formation, and transformation of the aerosol species. Haze evolution in this region exhibits distinct physical and chemical characteristics from clean to polluted periods, as evident from increasing stagnation and relative humidity, but decreasing solar radiation as well as explosive secondary aerosol formation. The latter is attributed to highly elevated concentrations of aerosol precursor gases and is reflected by rapid increases in the particle number and mass concentrations, both corresponding to nonequilibrium chemical processes. Considerable new knowledge has been acquired to understand the processes regulating haze formation, particularly in light of the progress in elucidating the aerosol formation mechanisms. This review synthesizes recent advances in understanding secondary aerosol formation, by highlighting several critical chemical/physical processes, that is, new particle formation and aerosol growth driven by photochemistry and aqueous chemistry as well as the interaction between aerosols and atmospheric stability. Current challenges and future research priorities are also discussed.


Assuntos
Poluentes Atmosféricos , Substâncias Explosivas , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Material Particulado/análise
9.
Environ Sci Technol ; 55(8): 4430-4439, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33721996

RESUMO

Large amounts of small α-dicarbonyls (glyoxal and methylglyoxal) are produced in the atmosphere from photochemical oxidation of biogenic isoprene and anthropogenic aromatics, but the fundamental mechanisms leading to secondary organic aerosol (SOA) and brown carbon (BrC) formation remain elusive. Methylglyoxal is commonly believed to be less reactive than glyoxal because of unreactive methyl substitution, and available laboratory measurements showed negligible aerosol growth from methylglyoxal. Herein, we present experimental results to demonstrate striking oligomerization of small α-dicarbonyls leading to SOA and BrC formation on sub-micrometer aerosols. Significantly more efficient growth and browning of aerosols occur upon exposure to methylglyoxal than glyoxal under atmospherically relevant concentrations and in the absence/presence of gas-phase ammonia and formaldehyde, and nonvolatile oligomers and light-absorbing nitrogen-heterocycles are identified as the dominant particle-phase products. The distinct aerosol growth and light absorption are attributed to carbenium ion-mediated nucleophilic addition, interfacial electric field-induced attraction, and synergetic oligomerization involving organic/inorganic species, leading to surface- or volume-limited reactions that are dependent on the reactivity and gaseous concentrations. Our findings resolve an outstanding discrepancy concerning the multiphase chemistry of small α-dicarbonyls and unravel a new avenue for SOA and BrC formation from atmospherically abundant, ubiquitous carbonyls and ammonia/ammonium sulfate.


Assuntos
Carbono , Glioxal , Aerossóis , Sulfato de Amônio , Aldeído Pirúvico
10.
Phys Chem Chem Phys ; 23(28): 15010-15019, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34128008

RESUMO

Reducing sulfur poisoning is significant for maintaining the catalytic efficiency and durability of heterogeneous catalysts. We screened PdAu nanoclusters with specific Pd : Au ratios based on Monte Carlo simulations and then carried out density functional calculations to reveal how to reduce sulfur poisoning via alloying. Among various nanoclusters, the core-shell structure Pd13Au42 (Pd@Au) exhibits a low adsorption energy of SO2 (-0.67 eV), comparable with O2 (-0.45 eV) and lower than CO (-1.25 eV), thus avoiding sulfur poisoning during the CO catalytic oxidation. Fundamentally, the weak adsorption of SO2 originates from the negative d-band center of the shell and delocalized charge distribution near the Fermi level, due to the appropriate charge transfer from the core to shell. Core-shell nanoclusters with a different core (Ni, Cu, Ag, Pt) and a Pd@Au slab model were further constructed to validate and extend the results. These findings provide insights into designing core-shell catalysts to suppress sulfur poisoning while optimizing catalytic behaviors.

11.
Proc Natl Acad Sci U S A ; 114(31): 8169-8174, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716940

RESUMO

Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmospheric models. Our experimental work indicates a larger-than-expected branching ratio for cresols, but a negligible formation of ring-opening products (e.g., methylglyoxal). Quantum chemical calculations also demonstrate that cresols are much more stable than their corresponding peroxy radicals, and, for the most favorable OH (ortho) addition, the pathway of H extraction by O2 to form the cresol proceeds with a smaller barrier than O2 addition to form the peroxy radical. Our results reveal that phenolic (rather than peroxy radical) formation represents the dominant pathway for toluene oxidation, highlighting the necessity to reassess its role in ozone and SOA formation in the atmosphere.

12.
Environ Sci Technol ; 53(1): 117-126, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30499298

RESUMO

Brown Carbon (BrC) aerosols scatter and absorb solar radiation, directly affecting the Earth's radiative budget. However, considerable uncertainty exists concerning the chemical mechanism leading to BrC formation and their optical properties. In this work, BrC particles were prepared from mixtures of small α-dicarbonyls (glyoxal and methylglyoxal) and amines (methylamine, dimethylamine, and trimethylamine). The absorption and scattering of BrC particles were measured using a photoacoustic extinctometer (405 and 532 nm), and the chemical composition of the α-dicarbonyl-amine mixtures was analyzed using orbitrap-mass spectrometry and thermal desorption-ion drift-chemical ionization mass spectrometry. The single scattering albedo for methylglyoxal-amine mixtures is smaller than that of glyoxal-amine mixtures and increases with the methyl substitution of amines. The mass absorption cross-section for methylglyoxal-amine mixtures is two times higher at 405 nm wavelength than that at 532 nm wavelength. The derived refractive indexes at the 405 nm wavelength are 1.40-1.64 for the real part and 0.002-0.195 for the imaginary part. Composition analysis in the α-dicarbonyl-amine mixtures reveals N-heterocycles as the dominant products, which are formed via multiple steps involving nucleophilic attack, steric hindrance, and dipole-dipole interaction between α-dicarbonyls and amines. BrC aerosols, if formed from the particle-phase reaction of methylglyoxal with methylamine, likely contribute to atmospheric warming.


Assuntos
Aminas , Carbono , Aerossóis , Glioxal , Aldeído Pirúvico
13.
Proc Natl Acad Sci U S A ; 113(16): 4266-71, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27035993

RESUMO

Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.


Assuntos
Poluentes Atmosféricos/química , Carbono/química , Modelos Químicos , Adsorção , China , Texas , Reforma Urbana
14.
Proc Natl Acad Sci U S A ; 113(48): 13630-13635, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849598

RESUMO

Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Sulfatos/efeitos adversos , Aerossóis/análise , Poluição do Ar/análise , China , Clima , Monitoramento Ambiental/métodos , Humanos , Londres , Nitratos , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/química , Óxidos de Nitrogênio/análise , Tamanho da Partícula , Material Particulado/efeitos adversos , Sulfatos/análise , Óxidos de Enxofre/análise , Tempo (Meteorologia)
15.
J Environ Sci (China) ; 76: 339-348, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528025

RESUMO

Traffic vehicles, many of which are powered by port fuel injection (PFI) engines, are major sources of particulate matter in the urban atmosphere. We studied particles from the emission of a commercial PFI-engine vehicle when it was running under the states of cold start, hot start, hot stabilized running, idle and acceleration, using a transmission electron microscope and an energy-dispersive X-ray detector. Results showed that the particles were mainly composed of organic, soot, and Ca-rich particles, with a small amount of S-rich and metal-containing particles, and displayed a unimodal size distribution with the peak at 600 nm. The emissions were highest under the cold start running state, followed by the hot start, hot stabilized, acceleration, and idle running states. Organic particles under the hot start and hot stabilized running states were higher than those of other running states. Soot particles were highest under the cold start running state. Under the idle running state, the relative number fraction of Ca-rich particles was high although their absolute number was low. These results indicate that PFI-engine vehicles emit substantial primary particles, which favor the formation of secondary aerosols via providing reaction sites and reaction catalysts, as well as supplying soot, organic, mineral and metal particles in the size range of the accumulation mode. In addition, the contents of Ca, P, and Zn in organic particles may serve as fingerprints for source apportionment of particles from PFI-engine vehicles.


Assuntos
Condução de Veículo , Gasolina/análise , Material Particulado/análise , Material Particulado/química , Emissões de Veículos/análise , Poluição do Ar , Tamanho da Partícula
16.
J Environ Sci (China) ; 66: 348-357, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628104

RESUMO

Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Modelos Químicos , Emissões de Veículos/análise , Aerossóis/química , Poluentes Atmosféricos/química , China , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
17.
Proc Natl Acad Sci U S A ; 111(49): 17373-8, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422462

RESUMO

As the world's second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.

18.
J Environ Sci (China) ; 51: 342-351, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28115147

RESUMO

Knowledge of particle number size distribution (PND) and new particle formation (NPF) events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality, haze, and human health. In this study, seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer (SMPS) at four sites in Southern China, including three urban sites and one background site. Particles were measured in the size range of 15-615nm, and the median particle number concentrations (PNCs) were found to vary in the range of 0.3×104-2.2×104cm-3 at the urban sites and were approximately 0.2×104cm-3 at the background site. The peak diameters at the different sites varied largely from 22 to 102nm. The PNCs in the Aitken mode (25-100nm) at the urban sites were up to 10 times higher than they were at the background site, indicating large primary emissions from traffic at the urban sites. The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events. The frequencies of NPF events at the different sites were 0%-30%, with the highest frequency occurring at an urban site during autumn. With higher SO2 concentrations and higher ambient temperatures being necessary, NPF at the urban site was found to be more influenced by atmospheric oxidizing capability, while NPF at the background site was limited by the condensation sink. This study provides a unique dataset of particle number and size information in various environments in Southern China, which can help understand the sources, formation, and the climate forcing of aerosols in this quickly developing region, as well as help constrain and validate NPF modeling.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera , China , Tamanho da Partícula
19.
Environ Sci Technol ; 50(16): 8605-12, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27384756

RESUMO

Laboratory experiments are conducted to investigate aging of size-classified black carbon (BC) particles from OH-initiated oxidation of m-xylene. The variations in the particle size, mass, effective density, morphology, optical properties, hygroscopicity, and activation as cloud condensation nuclei (CCN) are simultaneously measured by a suite of aerosol instruments, when BC particles are exposed to the oxidation products of the OH-m-xylene reactions. The BC aging is governed by the coating thickness (Δrve), which is correlated to the reaction time and initial concentrations of m-xylene and NOx. For an initial diameter of 100 nm and Δrve = 44 nm, the particle size and mass increase by a factor of 1.5 and 10.4, respectively, and the effective density increases from 0.43 to 1.45 g cm(-3) due to organic coating and collapsing of the BC core. The BC particles are fully converted from a highly fractal to nearly spherical morphology for Δrve = 30 nm. The scattering, absorption, and single scattering albedo of BC particles are enhanced accordingly with organic coating. The critical supersaturation for CCN activation is reduced to 0.1% with Δrve = 44 nm. The results imply that the oxidation of m-xylene exhibits larger impacts in modifying the BC particle properties than those for the OH-initiated oxidation of isoprene and toluene.


Assuntos
Aerossóis , Carbono/química , Fuligem/química , Xilenos/química , Oxirredução , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa