Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 223: 112579, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352583

RESUMO

Limited data are available on metabolic responses of plants to copper (Cu)-toxicity. Firstly, we investigated Cu-toxic effects on metabolomics, the levels of free amino acids, NH4+-N, NO3--N, total nitrogen, total soluble proteins, total phenolics, lignin, reduced glutathione (GSH) and malondialdehyde, and the activities of nitrogen-assimilatory enzymes in 'Shatian' pummelo (Citrus grandis) leaves. Then, a conjoint analysis of metabolomics, physiology and transcriptomics was performed. Herein, 59 upregulated [30 primary metabolites (PMs) and 29 secondary metabolites (SMs)] and 52 downregulated (31 PMs and 21 SMs) metabolites were identified in Cu-toxic leaves. The toxicity of Cu to leaves was related to the Cu-induced accumulation of NH4+ and decrease of nitrogen assimilation. Metabolomics combined with physiology and transcriptomics revealed some adaptive responses of C. grandis leaves to Cu-toxicity, including (a) enhancing tryptophan metabolism and the levels of some amino acids and derivatives (tryptophan, phenylalanine, 5-hydroxy-l-tryptophan, 5-oxoproline and GSH); (b) increasing the accumulation of carbohydrates and alcohols and upregulating tricarboxylic acid cycle and the levels of some organic acids and derivatives (chlorogenic acid, quinic acid, d-tartaric acid and gallic acid o-hexoside); (c) reducing phospholipid (lysophosphatidylcholine and lysophosphatidylethanolamine) levels, increasing non-phosphate containing lipid [monoacylglycerol ester (acyl 18:2) isomer 1] levels, and inducing low-phosphate-responsive gene expression; and (d) triggering the biosynthesis of some chelators (total phenolics, lignin, l-trytamine, indole, eriodictyol C-hexoside, quercetin 5-O-malonylhexosyl-hexoside, N-caffeoyl agmatine, N'-p-coumaroyl agmatine, hydroxy-methoxycinnamate and protocatechuic acid o-glucoside) and vitamins and derivatives (nicotinic acid-hexoside, B1 and methyl nicotinate). Cu-induced upregulation of many antioxidants could not protect Cu-toxic leaves from oxidative damage. To conclude, our findings corroborated the hypothesis that extensive reprogramming of metabolites was carried out in Cu-toxic C. grandis leaves in order to cope with Cu-toxicity.


Assuntos
Citrus , Citrus/genética , Cobre/toxicidade , Metabolômica , Folhas de Planta , Plântula/genética , Transcriptoma
2.
Plants (Basel) ; 12(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514294

RESUMO

Citrus sinensis seedlings were supplied with a nutrient solution containing 15 (control) or 0 (nitrogen (N) deficiency) mM N for 10 weeks. Extensive metabolic and gene reprogramming occurred in 0 mM N-treated roots (RN0) to cope with N deficiency, including: (a) enhancing the ability to keep phosphate homeostasis by elevating the abundances of metabolites containing phosphorus and the compartmentation of phosphate in plastids, and/or downregulating low-phosphate-inducible genes; (b) improving the ability to keep N homeostasis by lowering the levels of metabolites containing N but not phosphorus, upregulating N compound degradation, the root/shoot ratio, and the expression of genes involved in N uptake, and resulting in transitions from N-rich alkaloids to carbon (C)-rich phenylpropanoids and phenolic compounds (excluding indole alkaloids) and from N-rich amino acids to C-rich carbohydrates and organic acids; (c) upregulating the ability to maintain energy homeostasis by increasing energy production (tricarboxylic acid cycle, glycolysis/gluconeogenesis, oxidative phosphorylation, and ATP biosynthetic process) and decreasing energy utilization for amino acid and protein biosynthesis and new root building; (d) elevating the transmembrane transport of metabolites, thus enhancing the remobilization and recycling of useful compounds; and (e) activating protein processing in the endoplasmic reticulum. RN0 had a higher ability to detoxify reactive oxygen species and aldehydes, thus protecting RN0 against oxidative injury and delaying root senescence.

3.
Environ Pollut ; 311: 119982, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988675

RESUMO

For the first time, we used targeted metabolome to investigate the effects of pH-aluminum (Al) interactions on energy-rich compounds and their metabolites (ECMs) and phytohormones in sweet orange (Citrus sinensis) roots. The concentration of total ECMs (TECMs) was reduced by Al-toxicity in 4.0-treated roots, but unaffected significantly in pH 3.0-treated roots. However, the concentrations of most ECMs and TECMs were not lower in pH 4.0 + 1.0 mM Al-treated roots (P4AR) than in pH 3.0 + 1.0 mM Al-treated roots (P3AR). Increased pH improved the adaptability of ECMs to Al-toxicity in roots. For example, increased pH improved the utilization efficiency of ECMs and the conversion of organic phosphorus (P) from P-containing ECMs into available phosphate in Al-treated roots. We identified upregulated cytokinins (CKs), downregulated jasmonic acid (JA), methyl jasmonate (MEJA) and jasmonates (JAs), and unaltered indole-3-acetic acid (IAA) and salicylic acid (SA) in P3AR vs pH 3.0 + 0 mM Al-treated roots (P3R); upregulated JA, JAs and IAA, downregulated total CKs, and unaltered MEJA and SA in P4AR vs pH 4.0 + 0 mM Al-treated roots (P4R); and upregulated CKs, downregulated JA, MEJA, JAs and SA, and unaltered IAA in P3AR vs P4AR. Generally viewed, raised pH-mediated increments of JA, MEJA, total JAs, SA and IAA concentrations and reduction of CKs concentration in Al-treated roots might help to maintain nutrient homeostasis, increase Al-toxicity-induced exudation of organic acid anions and the compartmentation of Al in vacuole, and reduce oxidative stress and Al uptake, thereby conferring root Al-tolerance. In short, elevated pH-mediated mitigation of root Al-stress involved the regulation of ECMs and phytohormones.


Assuntos
Citrus sinensis , Citrus , Alumínio/metabolismo , Alumínio/toxicidade , Citrus sinensis/metabolismo , Concentração de Íons de Hidrogênio , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/metabolismo
4.
J Virol Methods ; 194(1-2): 107-12, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23988656

RESUMO

Since October 2010, clinical outbreaks of diarrhea in suckling piglets have reemerged in pig-producing areas of China, causing an acute increase in the morbidity and mortality in young piglets. Four viruses, porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine group A rotaviruses (GAR), and porcine circovirus 2 (PCV2), are the major causative agents of enteric disease in piglets. A novel multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for simultaneous detection of the four viruses in field samples from piglets. A mixture of four previously published pairs of primers were used for amplification of viral gene, yielding four different amplicons with sizes of 481 bp for PCV2, 651 bp for PEDV, 859 bp for TGEV, and 309 bp for GAR, respectively. The sensitivity of the mRT-PCR using plasmids containing the specific viral target fragments was 2.17 × 10(3), 2.1 × 10(3), 1.74 × 10(4) and 1.26 × 10(4)copies for the four viruses, respectively. A total of 378 field samples were collected from suckling piglets with diarrhea in East China from October 2010 to December 2012, and detected by mRT-PCR. The PEDV-positive rates of the three years were 69.2%, 62.8% and 54.9%, respectively, suggesting that PEDV was a major pathogen in these diarrheal outbreaks. Taken together, all data indicated that this mRT-PCR assay was a simple, rapid, sensitive, and cost-effective detection method for clinical diagnosis of mixed infections of porcine diarrhea associated viruses.


Assuntos
Diarreia/veterinária , Reação em Cadeia da Polimerase Multiplex/métodos , Infecções por Vírus de RNA/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Animais , China/epidemiologia , Circovirus/genética , Circovirus/isolamento & purificação , Coronaviridae/genética , Coronaviridae/isolamento & purificação , Primers do DNA/genética , Diarreia/epidemiologia , Diarreia/virologia , Prevalência , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , RNA Viral/genética , Rotavirus/genética , Rotavirus/isolamento & purificação , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa