Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475250

RESUMO

High damping rubber (HDR) bearings are extensively used in seismic design for bridges due to their remarkable energy dissipation capabilities, which is critical during earthquakes. A thorough assessment of crucial factors such as temperature, rate, experienced maximum amplitude, and the Mullins effect of HDR on the mechanics-based constitutive model of HDR is lacking. To address this issue, we propose a deep learning approach that integrates the Gate Recurrent Unit (GRU) and attention mechanism to identify time series characteristics from compression-shear test data of HDR specimens. It is shown that the combination of GRU and attention mechanism enables accurate prediction of the mechanical behavior of HDR specimens. Compared to the sole use of GRU, this suggested method significantly reduces model complexity and computation time while maintaining good prediction performance. Therefore, it offers a new approach to constructing the HDR constitutive model. Finally, the HDR constitutive model was used to analyze the impact of experienced maximum amplitudes and cycles on following processes. It was observed that maximum amplitudes directly influence the stress-strain relationship of HDR during subsequent processes. Consequently, a solid foundation is laid for evaluating the responses of HDR bearings under earthquakes.

2.
ISA Trans ; 149: 348-364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644075

RESUMO

The magnetic levitation (maglev) ball system is a prototypical Single-Input-Single-Output (SISO) system, characterized by its pronounced nonlinearity, rapid response, and open-loop instability. It serves as the basis for many industrial devices. For describing the dynamics of the maglev ball system precisely in the pseudo linear model, the long short-term memory (LSTM) based auto-regressive model with exogenous input variables (LSTM-ARX) is proposed. Firstly, the LSTM network is modified by incorporating the auto-regressive structure with respect to sequence input, allowing it to deduce a locally linearized model without the need for Taylor expansion. Then, the LSTM-ARX model is transformed into a linear parameter varying (LPV) state space model, and upon this foundation, a model predictive controller (MPC) is proposed. Specifically, when deducing the MPC, the deep learning-based model is linearized by fixing its state input at the current state, so that the nonlinear, non-convex optimization problem can be converted to a finite-horizon quadratic programming problem, thereby deriving the explicit form of MPC. To further enhance the efficiency of the controller in real-time control tasks, a predictive functional controller (PFC) is proposed. It employs multiple nonlinear functions to fit the control sequence, thereby reducing the number of decision variables of the on-line optimization problem in MPC. The proposed controller was successfully applied to the real-time control of the maglev ball system. Simulation and real-time control experiments have validated the improvement in transient performance and efficiency of the LSTM-ARX model-based PFC (LSTM-ARX-PFC).

3.
Int J Biol Macromol ; 227: 896-902, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528147

RESUMO

As SARS-CoV-2 variants of concern (VOC) reduce the effectiveness of existing anti-COVID therapeutics, it is increasingly critical to identify highly potent neutralizing antibodies (nAbs) that bind to conserved regions across multiple variants, especially beta, delta, and omicron variants. Using single-cell sequencing with biochemical methods and pseudo-typed virus neutralization experiments, here we report the characterization of a potent nAb BD-218, identified from an early screen of patients recovering from the original virus. We have determined the cryo-EM structure of the BD-218/spike protein complex to define its epitope in detail, which revealed that BD-218 interacts with a novel epitope on the receptor-binding domain (RBD) of the spike protein. We concluded that BD-218 is a highly effective and broadly active nAb against SARS-CoV-2 variants with promising potential for therapeutic development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Epitopos , Anticorpos Antivirais/genética
4.
PNAS Nexus ; 2(5): pgad141, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181047

RESUMO

A plant can be thought of as a colony comprising numerous growth buds, each developing to its own rhythm. Such lack of synchrony impedes efforts to describe core principles of plant morphogenesis, dissect the underlying mechanisms, and identify regulators. Here, we use the minimalist known angiosperm to overcome this challenge and provide a model system for plant morphogenesis. We present a detailed morphological description of the monocot Wolffia australiana, as well as high-quality genome information. Further, we developed the plant-on-chip culture system and demonstrate the application of advanced technologies such as single-nucleus RNA-sequencing, protein structure prediction, and gene editing. We provide proof-of-concept examples that illustrate how W. australiana can decipher the core regulatory mechanisms of plant morphogenesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa