Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2403796121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809710

RESUMO

Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-ß and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/ß levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-ß mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-ß responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.


Assuntos
Interferon Tipo I , Malária , Plasmodium yoelii , Receptores Odorantes , Animais , Camundongos , Malária/imunologia , Malária/parasitologia , Malária/metabolismo , Humanos , Células HEK293 , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Camundongos Knockout , Transdução de Sinais , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 120(40): e2311557120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748059

RESUMO

Plasmodium parasites cause malaria with disease outcomes ranging from mild illness to deadly complications such as severe malarial anemia (SMA), pulmonary edema, acute renal failure, and cerebral malaria. In young children, SMA often requires blood transfusion and is a major cause of hospitalization. Malaria parasite infection leads to the destruction of infected and noninfected erythrocytes as well as dyserythropoiesis; however, the mechanism of dyserythropoiesis accompanied by splenomegaly is not completely understood. Using Plasmodium yoelii yoelii 17XNL as a model, we show that both a defect in erythroblastic island (EBI) macrophages in supporting red blood cell (RBC) maturation and the destruction of reticulocytes/RBCs by the parasites contribute to SMA and splenomegaly. After malaria parasite infection, the destruction of both infected and noninfected RBCs stimulates extramedullary erythropoiesis in mice. The continuous decline of RBCs stimulates active erythropoiesis and drives the expansion of EBIs in the spleen, contributing to splenomegaly. Phagocytosis of malaria parasites by macrophages in the bone marrow and spleen may alter their functional properties and abilities to support erythropoiesis, including reduced expression of the adherence molecule CD169 and inability to support erythroblast differentiation, particularly RBC maturation in vitro and in vivo. Therefore, macrophage dysfunction is a key mechanism contributing to SMA. Mitigating and/or alleviating the inhibition of RBC maturation may provide a treatment strategy for SMA.


Assuntos
Anemia , Malária Cerebral , Plasmodium yoelii , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Eritropoese , Esplenomegalia , Eritrócitos , Macrófagos
3.
Antimicrob Agents Chemother ; 67(2): e0082122, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36625569

RESUMO

Protein ubiquitination is an important posttranslational regulation mechanism that mediates Plasmodium development and modifies parasite responses to antimalarial drugs. Although mutations in several parasite ubiquitination enzymes have been linked to increased drug tolerance, the molecular mechanisms by which ubiquitination pathways mediate these parasite responses remain largely unknown. Here, we investigate the roles of a Plasmodium falciparum ring finger ubiquitin ligase (PfRFUL) in parasite development and in responses to antimalarial drugs. We engineered a transgenic parasite having the Pfrful gene tagged with an HA-2A-NeoR-glmS sequence to knockdown (KD) Pfrful expression using glucosamine (GlcN). A Western blot analysis of the proteins from GlcN-treated pSLI-HA-NeoR-glmS-tagged (PfRFULg) parasites, relative to their wild-type (Dd2) controls, showed changes in the ubiquitination of numerous proteins. PfRFUL KD rendered the parasites more sensitive to multiple antimalarial drugs, including mefloquine, piperaquine, amodiaquine, and dihydroartemisinin. PfRFUL KD also decreased the protein level of the P. falciparum multiple drug resistance 1 protein (PfMDR1) and altered the ratio of two bands of the P. falciparum chloroquine resistance transporter (PfCRT), suggesting contributions to the changed drug responses by the altered ubiquitination of these two molecules. The inhibition of proteasomal protein degradation by epoxomicin increased the PfRFUL level, suggesting the degradation of PfRFUL by the proteasome pathways, whereas the inhibition of E3 ubiquitin ligase activities by JNJ26854165 reduced the PfRFUL level. This study reveals the potential mechanisms of PfRFUL in modifying the expression of drug transporters and their roles in parasite drug responses. PfRFUL could be a potential target for antimalarial drug development.


Assuntos
Antimaláricos , Plasmodium falciparum , Proteínas de Protozoários , Ubiquitina-Proteína Ligases , Humanos , Antimaláricos/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(32): 19465-19474, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32709745

RESUMO

Infection by malaria parasites triggers dynamic immune responses leading to diverse symptoms and pathologies; however, the molecular mechanisms responsible for these reactions are largely unknown. We performed Trans-species Expression Quantitative Trait Locus analysis to identify a large number of host genes that respond to malaria parasite infections. Here we functionally characterize one of the host genes called receptor transporter protein 4 (RTP4) in responses to malaria parasite and virus infections. RTP4 is induced by type I IFN (IFN-I) and binds to the TANK-binding kinase (TBK1) complex where it negatively regulates TBK1 signaling by interfering with expression and phosphorylation of both TBK1 and IFN regulatory factor 3. Rtp4-/- mice were generated and infected with malaria parasite Plasmodiun berghei ANKA. Significantly higher levels of IFN-I response in microglia, lower parasitemia, fewer neurologic symptoms, and better survival rates were observed in Rtp4-/- than in wild-type mice. Similarly, RTP4 deficiency significantly reduced West Nile virus titers in the brain, but not in the heart and the spleen, of infected mice, suggesting a specific role for RTP4 in brain infection and pathology. This study reveals functions of RTP4 in IFN-I response and a potential target for therapy in diseases with neuropathology.


Assuntos
Encéfalo/patologia , Interferon Tipo I/metabolismo , Malária Cerebral/patologia , Chaperonas Moleculares/metabolismo , Animais , Encéfalo/parasitologia , Encéfalo/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Chaperonas Moleculares/genética , Fosforilação , Plasmodium berghei/fisiologia , Plasmodium yoelii/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Febre do Nilo Ocidental/metabolismo , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia
5.
Proc Natl Acad Sci U S A ; 117(28): 16567-16578, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32606244

RESUMO

Malaria infection induces complex and diverse immune responses. To elucidate the mechanisms underlying host-parasite interaction, we performed a genetic screen during early (24 h) Plasmodium yoelii infection in mice and identified a large number of interacting host and parasite genes/loci after transspecies expression quantitative trait locus (Ts-eQTL) analysis. We next investigated a host E3 ubiquitin ligase gene (March1) that was clustered with interferon (IFN)-stimulated genes (ISGs) based on the similarity of the genome-wide pattern of logarithm of the odds (LOD) scores (GPLS). March1 inhibits MAVS/STING/TRIF-induced type I IFN (IFN-I) signaling in vitro and in vivo. However, in malaria-infected hosts, deficiency of March1 reduces IFN-I production by activating inhibitors such as SOCS1, USP18, and TRIM24 and by altering immune cell populations. March1 deficiency increases CD86+DC (dendritic cell) populations and levels of IFN-γ and interleukin 10 (IL-10) at day 4 post infection, leading to improved host survival. T cell depletion reduces IFN-γ level and reverse the protective effects of March1 deficiency, which can also be achieved by antibody neutralization of IFN-γ. This study reveals functions of MARCH1 (membrane-associated ring-CH-type finger 1) in innate immune responses and provides potential avenues for activating antimalaria immunity and enhancing vaccine efficacy.


Assuntos
Malária/imunologia , Plasmodium yoelii/fisiologia , Linfócitos T/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Malária/enzimologia , Malária/genética , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium yoelii/imunologia , Ubiquitina-Proteína Ligases/genética
6.
BMC Genomics ; 22(1): 303, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902452

RESUMO

BACKGROUND: Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. RESULTS: We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. CONCLUSIONS: The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.


Assuntos
Malária , Parasitos , Plasmodium yoelii , Animais , Plasmodium yoelii/genética , Roedores , Transcriptoma
7.
Mol Microbiol ; 104(6): 1037-1051, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370665

RESUMO

Growth of Pseudomonas aeruginosa on spermine requires a functional γ-glutamylpolyamine synthetase PauA2. Not only subjected to growth inhibition by spermine, the pauA2 mutant became more sensitive to ß-lactam antibiotics in human serum. To explore PauA2 as a potential target of drug development, suppressors of the pauA2 mutant, which alleviated toxicity, were isolated from selection plates containing spermine. These suppressors share common phenotypic changes including delayed growth rate, retarded swarming motility, and pyocyanin overproduction. Genome resequencing of a representative suppressor revealed a unique C599 T mutation at the phoU gene that results in Ser200 Leu substitution and a constitutive expression of the Pho regulon. Identical phenotypes were also observed in a ΔpauA2ΔphoU double knockout mutant and complemented by the wild-type phoU gene. Accumulation of polyphosphate granules and spermine resistance in the suppressor were reversed concomitantly when expressing exopolyphosphatase PPX from a recombinant plasmid, or by the introduction of deletion alleles in pstS pstC for phosphate uptake, phoB for Pho regulation, and ppk for polyphosphate synthesis. In conclusion, this study identifies polyphosphate accumulation due to an activated Pho regulon and phosphate uptake by the phoU mutation as a potential protection mechanism against spermine toxicity.


Assuntos
Polifosfatos/metabolismo , Pseudomonas aeruginosa/metabolismo , Espermina/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fosfatos/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas aeruginosa/genética , Regulon/genética , Espermina/fisiologia , Fatores de Transcrição/metabolismo
8.
J Bacteriol ; 195(17): 3906-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23794626

RESUMO

Pseudomonas aeruginosa PAO1 grows on a variety of polyamines as the sole source of carbon and nitrogen. Catabolism of polyamines is mediated by the γ-glutamylation pathway, which is complicated by the existence of multiple homologous enzymes with redundant specificities toward different polyamines for a more diverse metabolic capacity in this organism. Through a series of markerless gene knockout mutants and complementation tests, specific combinations of pauABCD (polyamine utilization) genes were deciphered for catabolism of different polyamines. Among six pauA genes, expression of pauA1, pauA2, pauA4, and pauA5 was found to be inducible by diamines putrescine (PUT) and cadaverine (CAD) but not by diaminopropane. Activation of these promoters was regulated by the PauR repressor, as evidenced by constitutively active promoters in the pauR mutant. The activities of these promoters were further enhanced by exogenous PUT or CAD in the mutant devoid of all six pauA genes. The recombinant PauR protein with a hexahistidine tag at its N terminus was purified, and specific bindings of PauR to the promoter regions of most pau operons were demonstrated by electromobility shift assays. Potential interactions of PUT and CAD with PauR were also suggested by chemical cross-linkage analysis with glutaraldehyde. In comparison, growth on PUT was more proficient than that on CAD, and this observed growth phenotype was reflected in a strong catabolite repression of pauA promoter activation by CAD but was completely absent as reflected by activation by PUT. In summary, this study clearly establishes the function of PauR in control of pau promoters in response to PUT and CAD for their catabolism through the γ-glutamylation pathway.


Assuntos
Cadaverina/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Putrescina/metabolismo , Proteínas Repressoras/metabolismo , Biotransformação , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação
9.
mBio ; 11(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911494

RESUMO

Erythrocyte-binding-like (EBL) proteins are known to play an important role in malaria parasite invasion of red blood cells (RBCs); however, any roles of EBL proteins in regulating host immune responses remain unknown. Here, we show that Plasmodium yoelii EBL (PyEBL) can shape disease severity by modulating the surface structure of infected RBCs (iRBCs) and host immune responses. We identified an amino acid substitution (a change of C to Y at position 741 [C741Y]) in the protein trafficking domain of PyEBL between isogenic P. yoelliinigeriensis strain N67 and N67C parasites that produce different disease phenotypes in C57BL/6 mice. Exchanges of the C741Y alleles altered parasite growth and host survival accordingly. The C741Y substitution also changed protein processing and trafficking in merozoites and in the cytoplasm of iRBCs, reduced PyEBL binding to band 3, increased phosphatidylserine (PS) surface exposure, and elevated the osmotic fragility of iRBCs, but it did not affect invasion of RBCs in vitro The modified iRBC surface triggered PS-CD36-mediated phagocytosis of iRBCs, host type I interferon (IFN-I) signaling, and T cell differentiation, leading to improved host survival. This study reveals a previously unknown role of PyEBL in regulating host-pathogen interaction and innate immune responses, which may be explored for developing disease control strategies.IMPORTANCE Malaria is a deadly parasitic disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild symptoms, or fatal, depending on a delicate balance of host immune responses. Malaria parasites enter host red blood cells (RBCs) through interactions between parasite ligands and host receptors, such as erythrocyte-binding-like (EBL) proteins and host Duffy antigen receptor for chemokines (DARC). Plasmodium yoelii EBL (PyEBL) is known to play a role in parasite invasion of RBCs. Here, we show that PyEBL also affects disease severity through modulation of host immune responses, particularly type I interferon (IFN-I) signaling. This discovery assigns a new function to PyEBL and provides a mechanism for developing disease control strategies.


Assuntos
Antígenos de Protozoários/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Malária/imunologia , Malária/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium yoelii/fisiologia , Proteínas de Protozoários/metabolismo , Alelos , Antígenos de Protozoários/metabolismo , Biomarcadores , Citocinas/metabolismo , Imunofluorescência , Interações Hospedeiro-Parasita , Imuno-Histoquímica , Malária/diagnóstico , Malária/metabolismo , Proteínas de Membrana/imunologia , Fragilidade Osmótica , Fagocitose/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Índice de Gravidade de Doença , Baço/imunologia , Baço/metabolismo , Baço/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
10.
Sci Rep ; 8(1): 15280, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327482

RESUMO

Malaria is a disease with diverse symptoms depending on host immune status and pathogenicity of Plasmodium parasites. The continuous parasite growth within a host suggests mechanisms of immune evasion by the parasite and/or immune inhibition in response to infection. To identify pathways commonly inhibited after malaria infection, we infected C57BL/6 mice with four Plasmodium yoelii strains causing different disease phenotypes and 24 progeny of a genetic cross. mRNAs from mouse spleens day 1 and/or day 4 post infection (p.i.) were hybridized to a mouse microarray to identify activated or inhibited pathways, upstream regulators, and host genes playing an important role in malaria infection. Strong interferon responses were observed after infection with the N67 strain, whereas initial inhibition and later activation of hematopoietic pathways were found after infection with 17XNL parasite, showing unique responses to individual parasite strains. Inhibitions of pathways such as Th1 activation, dendritic cell (DC) maturation, and NFAT immune regulation were observed in mice infected with all the parasite strains day 4 p.i., suggesting universally inhibited immune pathways. As a proof of principle, treatment of N67-infected mice with antibodies against T cell receptors OX40 or CD28 to activate the inhibited pathways enhanced host survival. Controlled activation of these pathways may provide important strategies for better disease management and for developing an effective vaccine.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Malária , Plasmodium yoelii/fisiologia , Transdução de Sinais/imunologia , Baço , Animais , Antígenos CD28/imunologia , Malária/genética , Malária/imunologia , Malária/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries/métodos , Fatores de Transcrição NFATC/imunologia , Parasitemia/imunologia , RNA Mensageiro/genética , Receptores OX40/imunologia , Baço/metabolismo , Baço/parasitologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa