Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(36): e2206327119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037380

RESUMO

Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnß1 transcription in the brain of mice infected with Plasmodium berghei ANKA (Pba). This STING1/IFNß-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood-brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN-driven brain inflammation was demonstrated in brain endothelial-specific IFNß-reporter and STING1-deficient Pba-infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba-infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNß in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNß/CXCL10 axis crucial to CM pathogenesis and lethality.


Assuntos
Encéfalo , Heme , Interferon beta , Malária Cerebral , Proteínas de Membrana , Animais , Encéfalo/parasitologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Endotélio/imunologia , Endotélio/parasitologia , Heme/metabolismo , Interferon beta/imunologia , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Plasmodium berghei/metabolismo , Ativação Transcricional/imunologia
2.
PLoS Pathog ; 17(8): e1009772, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352039

RESUMO

Understanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike. Mutations in spike impacting antibody and/or ACE2 binding are appearing worldwide, imposing the need to monitor SARS-CoV2 evolution and dynamics in the population. Determining signatures in SARS-CoV-2 that render the virus resistant to neutralizing antibodies is critical. We engineered 25 spike-pseudotyped lentiviruses containing individual and combined mutations in the spike protein, including all defining mutations in the variants of concern, to identify the effect of single and synergic amino acid substitutions in promoting immune escape. We confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent and post-immunization sera, particularly when combined with E484K and with mutations able to increase binding to ACE2, such as N501Y. Our analysis of synergic mutations provides a signature for hotspots for immune evasion and for targets of therapies, vaccines and diagnostics.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Substituição de Aminoácidos/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Linhagem Celular , Humanos , Evasão da Resposta Imune , Mutação/genética , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Parasitol Res ; 122(3): 729-737, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36694092

RESUMO

Cerebral malaria (CM) is a severe neurological condition caused by Plasmodium falciparum. Disruption of the brain-blood barrier (BBB) is a key pathological event leading to brain edema and vascular leakage in both humans and in the mouse model of CM. Interactions of brain endothelial cells with infected red blood cells (iRBCs) and with circulating inflammatory mediators and immune cells contribute to BBB dysfunction in CM. Adjunctive therapies for CM aim at preserving the BBB to prevent neurologic deficits. Experimental animal and cellular models are essential to develop new therapeutic strategies. However, in mice, the disease develops rapidly, which offers a very narrow time window for testing the therapeutic potential of drugs acting in the BBB. Here, we establish a brain endothelial cell barrier whose disturbance can be monitored by several parameters. Using this system, we found that incubation with iRBCs and with extracellular particles (EPs) released by iRBCs changes endothelial cell morphology, decreases the tight junction protein zonula occludens-1 (ZO-1), increases the gene expression of the intercellular adhesion molecule 1 (ICAM-1), and induces a significant reduction in transendothelial electrical resistance (TEER) with increased permeability. We propose this in vitro experimental setup as a straightforward tool to investigate molecular interactions and pathways causing endothelial barrier dysfunction and to test compounds that may target BBB and be effective against CM. A pre-selection of the effective compounds that strengthen the resistance of the brain endothelial cell barrier to Plasmodium-induced blood factors in vitro may increase the likelihood of their efficacy in preclinical disease mouse models of CM and in subsequent clinical trials with patients.


Assuntos
Células Endoteliais , Malária Cerebral , Humanos , Animais , Camundongos , Encéfalo/metabolismo , Barreira Hematoencefálica , Malária Cerebral/tratamento farmacológico , Malária Cerebral/metabolismo , Plasmodium falciparum/fisiologia
4.
Diabetologia ; 65(5): 861-871, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35190847

RESUMO

AIMS/HYPOTHESIS: Imbalances in glucose metabolism are hallmarks of clinically silent prediabetes (defined as impaired fasting glucose and/or impaired glucose tolerance) representing dysmetabolism trajectories leading to type 2 diabetes. CD26/dipeptidyl peptidase 4 (DPP4) is a clinically proven molecular target of diabetes-controlling drugs but the DPP4 gene control of dysglycaemia is not proven. METHODS: We dissected the genetic control of post-OGTT and insulin release responses by the DPP4 gene in a Portuguese population-based cohort of mainly European ancestry that comprised individuals with normoglycaemia and prediabetes, and in mouse experimental models of Dpp4 deficiency and hyperenergetic diet. RESULTS: In individuals with normoglycaemia, DPP4 single-nucleotide variants governed glycaemic excursions (rs4664446, p=1.63x10-7) and C-peptide release responses (rs2300757, p=6.86x10-5) upon OGTT. Association with blood glucose levels was stronger at 30 min OGTT, but a higher association with the genetic control of insulin secretion was detected in later phases of the post-OGTT response, suggesting that the DPP4 gene directly senses glucose challenges. Accordingly, in mice fed a normal chow diet but not a high-fat diet, we found that, under OGTT, expression of Dpp4 is strongly downregulated at 30 min in the mouse liver. Strikingly, no genetic association was found in prediabetic individuals, indicating that post-OGTT control by DPP4 is abrogated in prediabetes. Furthermore, Dpp4 KO mice provided concordant evidence that Dpp4 modulates post-OGTT C-peptide release in normoglycaemic but not dysmetabolic states. CONCLUSIONS/INTERPRETATION: These results showed the DPP4 gene as a strong determinant of post-OGTT levels via glucose-sensing mechanisms that are abrogated in prediabetes. We propose that impairments in DPP4 control of post-OGTT insulin responses are part of molecular mechanisms underlying early metabolic disturbances associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Animais , Glicemia/metabolismo , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina/genética , Camundongos , Estado Pré-Diabético/metabolismo
5.
J Theor Biol ; 540: 111063, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35189135

RESUMO

Individual variation in susceptibility and exposure is subject to selection by natural infection, accelerating the acquisition of immunity, and reducing herd immunity thresholds and epidemic final sizes. This is a manifestation of a wider population phenomenon known as "frailty variation". Despite theoretical understanding, public health policies continue to be guided by mathematical models that leave out considerable variation and as a result inflate projected disease burdens and overestimate the impact of interventions. Here we focus on trajectories of the coronavirus disease (COVID-19) pandemic in England and Scotland until November 2021. We fit models to series of daily deaths and infer relevant epidemiological parameters, including coefficients of variation and effects of non-pharmaceutical interventions which we find in agreement with independent empirical estimates based on contact surveys. Our estimates are robust to whether the analysed data series encompass one or two pandemic waves and enable projections compatible with subsequent dynamics. We conclude that vaccination programmes may have contributed modestly to the acquisition of herd immunity in populations with high levels of pre-existing naturally acquired immunity, while being crucial to protect vulnerable individuals from severe outcomes as the virus becomes endemic.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Imunidade Coletiva , Pandemias/prevenção & controle , Vacinação
6.
Infect Immun ; 89(8): e0080920, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061587

RESUMO

Pregnancy-associated malaria is often associated with adverse pregnancy outcomes. Placental circulatory impairments are an intriguing and unsolved component of malaria pathophysiology. Here, we uncovered a Toll-like receptor 4 (TLR4)-TRIF-endothelin axis that controls trophoblast motility and is linked to fetal protection during Plasmodium infection. In a cohort of 401 pregnancies from northern Brazil, we found that infection during pregnancy reduced expression of endothelin receptor B in syncytiotrophoblasts, while endothelin expression was only affected during acute infection. We further show that quantitative expression of placental endothelin and endothelin receptor B proteins are differentially controlled by maternal and fetal TLR4 alleles. Using murine malaria models, we identified placental autonomous responses to malaria infection mediated by fetally encoded TLR4 that not only controlled placental endothelin gene expression but also correlated with fetal viability protection. In vitro assays showed that control of endothelin expression in fetal syncytiotrophoblasts exposed to Plasmodium-infected erythrocytes was dependent on TLR4 via the TRIF pathway but not MyD88 signaling. Time-lapse microscopy in syncytiotrophoblast primary cultures and cell invasion assays demonstrated that ablation of TLR4 or endothelin receptor blockade abrogates trophoblast collective motility and cell migration responses to infected erythrocytes. These results cohesively substantiate the hypothesis that fetal innate immune sensing, namely, the TRL4-TRIF pathway, exerts a fetal protective role during malaria infection by mediating syncytiotrophoblast vasoregulatory responses that counteract placental insufficiency.


Assuntos
Endotelinas/metabolismo , Placenta/metabolismo , Placenta/parasitologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Trofoblastos/metabolismo , Biomarcadores , Brasil , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Malária/imunologia , Malária/metabolismo , Malária/parasitologia , Placenta/imunologia , Gravidez , Complicações Parasitárias na Gravidez , Resultado da Gravidez
7.
Cell Microbiol ; 22(6): e13201, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32149435

RESUMO

Infections with protozoan and helminthic parasites affect multiple organs in the mammalian host. Imaging pathogens in their natural environment takes a more holistic view on biomedical aspects of parasitic infections. Here, we focus on selected organs of the thoracic and abdominopelvic cavities most commonly affected by parasites. Parasitic infections of these organs are often associated with severe medical complications or have health implications beyond the infected individual. Intravital imaging has provided a more dynamic picture of the host-parasite interplay and contributed not only to our understanding of the various disease pathologies, but has also provided fundamental insight into the biology of the parasites.


Assuntos
Interações Hospedeiro-Parasita , Microscopia Intravital/métodos , Parasitos , Doenças Parasitárias , Animais , Feminino , Genitália , Coração/parasitologia , Humanos , Fígado , Pulmão/parasitologia , Masculino , Glândulas Mamárias Humanas , Placenta , Gravidez
9.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440369

RESUMO

Malaria in pregnancy (MiP) is a distinctive clinical form of Plasmodium infection and is a cause of placental insufficiency leading to poor pregnancy outcomes. Maternal innate immunity responses play a decisive role in the development of placental inflammation, but the action of fetus-derived factors in MiP outcomes has been overlooked. We investigated the role of the Tlr4 and Ifnar1 genes, taking advantage of heterogenic mating strategies to dissect the effects mediated by maternally and fetally derived Toll-like receptor 4 (TLR4) or type I interferon receptor 1 (IFNAR1). Using a mouse infection system displaying severe MiP outcomes, we found that the expressions of TLR4 and IFNAR1 in the maternal compartment take part in deleterious MiP outcomes, but their fetal counterparts patently counteract these effects. We uncovered that fetal TLR4 contributes to the in vitro uptake of infected erythrocytes by trophoblasts and to the innate immune response in the placenta, offering robust protection of fetus viability, but had no sensible impact on the placental parasite burden. In contrast, we observed that the expression of IFNAR1 in the fetal compartment was associated with a reduced placental parasite burden but had little beneficial effect on fetus outcomes. Furthermore, the downregulation of Ifnar1 expression in infected placentas and in trophoblasts exposed to infected erythrocytes indicated that the interferon-IFNAR1 pathway is involved in the trophoblast response to infection. This work unravels that maternal and fetal counterparts of innate immune pathways drive opposing responses in murine placental malaria and implicates the activation of innate receptors in fetal trophoblast cells in the control of placental infection and in the protection of the fetus.


Assuntos
Feto/imunologia , Imunidade Inata/imunologia , Malária/imunologia , Complicações Infecciosas na Gravidez/imunologia , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/imunologia , Adulto , Feminino , Humanos , Imunidade Inata/genética , Malária/genética , Troca Materno-Fetal/fisiologia , Gravidez , Complicações Infecciosas na Gravidez/genética , Receptor de Interferon alfa e beta/genética , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
10.
Immunogenetics ; 69(7): 429-437, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28534223

RESUMO

Several lines of evidence show that autoimmune responses evolving in type 1 diabetes (T1D) patients include the generation of multi-reactive autoantibody (AutoAb) repertoires, but their role in T1D pathogenesis remains elusive. We tested the hypothesis that variants at the immunoglobulin heavy chain (IGH) locus are genetic determinants of AutoAbs against pancreatic antigens and contribute to T1D susceptibility. With this aim, two independent study designs were used: a case-control study and a family-based cohort comprising a total of 240 T1D patients, 172 first-degree relatives (mother and/or father), and 130 unrelated healthy controls living in Portugal. We found that three SNPs in the IGH locus show suggestive association with T1D with the highest nominal association at rs1950942 (in the IGHM-IGHJ gene region) in both the case-control study (P = 9.35E-03) and the family-based cohort (P = 3.08E-03). These SNPs were also associated with IgG AutoAbs against pancreatic antigens and with AutoAb multi-reactivity in T1D patients. Notably, we found that the SNP with the highest association with T1D susceptibility and IgG autoantibody reactivity (rs1950942) was also associated with anti-GAD IgM reactivity in T1D patients (P = 5.98E-03) and in non-affected parents (P = 4.17E-03). This finding implies that IGH association with autoreactive IgM is detectable irrespective of disease status.These results suggest that genetic variants at the IgM gene region of the IGH locus contribute to antibody autoreactivity and are associated with T1D. We propose that the control of autoantibody generation by IGH polymorphisms is a component of the complex architecture of T1D genetic susceptibility.


Assuntos
Autoanticorpos/sangue , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Adolescente , Adulto , Autoanticorpos/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus Tipo 1/sangue , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
11.
J Med Virol ; 89(5): 922-925, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27704549

RESUMO

Gastroenteritis is considered a major illness within the military settings being caused by foodborne enteric pathogens that are particularly easily spread in the crowded conditions of military camps. Gastroenteritis outbreaks caused by norovirus usually affect a great number of soldiers due to the low infectious dose, copious viral shedding, and environmental stability. The present study describes the investigation of an outbreak of acute gastroenteritis that occurred in April 2015 in a Portuguese army base, focusing on the study of the epidemiological curve, symptoms experienced by the affected soldiers, and results of food, water, and stool microbiological analysis. From a total of 938 military personnel stationed on the base 46 soldiers developed acute gastroenteritis. Stool analysis of seven cases showed to be positive for norovirus GI.9 that was the probable cause of the outbreak. This report shows that genogroup I norovirus can also cause considerable morbidity in healthy young soldiers, affecting the operational effectiveness on the military forces. J. Med. Virol. 89:922-925, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Infecções por Caliciviridae/epidemiologia , Surtos de Doenças , Gastroenterite/epidemiologia , Genótipo , Militares , Norovirus/classificação , Norovirus/genética , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/virologia , Gastroenterite/patologia , Gastroenterite/virologia , Humanos , Norovirus/isolamento & purificação , Portugal/epidemiologia , Estudos Retrospectivos , Inquéritos e Questionários
12.
Infect Immun ; 84(6): 1761-1774, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27045035

RESUMO

Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane. Plasmodium berghei IE infection in pregnant BALB/c mice is a model for severe placental malaria (PM). Here, we describe a transgenic P. berghei parasite expressing the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) fused to a P. berghei exported protein (EMAP1) and characterize a var2CSA-based mouse model of PM. BALB/c mice were infected at midgestation with different doses of P. berghei-var2CSA (P. berghei-VAR) or P. berghei wild-type IEs. Infection with 10(4) P. berghei-VAR IEs induced a higher incidence of stillbirth and lower fetal weight than P. berghei At doses of 10(5) and 10(6) IEs, P. berghei-VAR-infected mice showed increased maternal mortality during pregnancy and fetal loss, respectively. Parasite loads in infected placentas were similar between parasite lines despite differences in maternal outcomes. Fetal weight loss normalized for parasitemia was higher in P. berghei-VAR-infected mice than in P. berghei-infected mice. In vitro assays showed that higher numbers of P. berghei-VAR IEs than P. berghei IEs adhered to placental tissue. Immunization of mice with P. berghei-VAR elicited IgG antibodies reactive to DBL1-6 recombinant protein, indicating that the topology of immunogenic epitopes is maintained between DBL1-6-EMAP1 on P. berghei-VAR and recombinant DBL1-6 (recDBL1-6). Our data suggested that impairments in pregnancy caused by P. berghei-VAR infection were attributable to var2CSA expression. This model provides a tool for preclinical evaluation of protection against PM induced by approaches that target var2CSA.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Antígenos de Protozoários/imunologia , Malária Falciparum/prevenção & controle , Malária/prevenção & controle , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/imunologia , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Eritrócitos/imunologia , Eritrócitos/parasitologia , Feminino , Peso Fetal/efeitos dos fármacos , Imunização , Imunoglobulina G/biossíntese , Malária/imunologia , Malária/patologia , Malária Falciparum/imunologia , Malária Falciparum/patologia , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Parasitemia/imunologia , Parasitemia/patologia , Parasitemia/prevenção & controle , Placenta , Plasmodium berghei/genética , Plasmodium falciparum/genética , Gravidez , Complicações Parasitárias na Gravidez/imunologia , Complicações Parasitárias na Gravidez/patologia , Complicações Parasitárias na Gravidez/prevenção & controle , Domínios Proteicos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Natimorto
13.
Am J Pathol ; 185(11): 3039-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26343328

RESUMO

Tissue pantetheinase, encoded by the VNN1 gene, regulates response to stress, and previous studies have shown that VNN genes contribute to the susceptibility to malaria. Herein, we evaluated the role of pantetheinase on erythrocyte homeostasis and on the development of malaria in patients and in a new mouse model of pantetheinase insufficiency. Patients with cerebral malaria have significantly reduced levels of serum pantetheinase activity (PA). In mouse, we show that a reduction in serum PA predisposes to severe malaria, including cerebral malaria and severe anemia. Therefore, scoring pantetheinase in serum may serve as a severity marker in malaria infection. This disease triggers an acute stress in erythrocytes, which enhances cytoadherence and hemolysis. We speculated that serum pantetheinase might contribute to erythrocyte resistance to stress under homeostatic conditions. We show that mutant mice with a reduced serum PA are anemic and prone to phenylhydrazine-induced anemia. A cytofluorometric and spectroscopic analysis documented an increased frequency of erythrocytes with an autofluorescent aging phenotype. This is associated with an enhanced oxidative stress and shear stress-induced hemolysis. Red blood cell transfer and bone marrow chimera experiments show that the aging phenotype is not cell intrinsic but conferred by the environment, leading to a shortening of red blood cell half-life. Therefore, serum pantetheinase level regulates erythrocyte life span and modulates the risk of developing complicated malaria.


Assuntos
Amidoidrolases/sangue , Eritrócitos/fisiologia , Malária/fisiopatologia , Adolescente , Adulto , Amidoidrolases/metabolismo , Anemia , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/metabolismo , Homeostase , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 110(48): 19531-6, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218563

RESUMO

Plasmodium liver stage infection is a target of interest for the treatment of and vaccination against malaria. Here we used forward genetics to search for mechanisms underlying natural host resistance to infection and identified triggering receptor expressed on myeloid cells 2 (TREM2) and MHC class II molecules as determinants of Plasmodium berghei liver stage infection in mice. Locus belr1 confers resistance to malaria liver stage infection. The use of newly derived subcongenic mouse lines allowed to map belr1 to a 4-Mb interval on mouse chromosome 17 that contains the Trem2 gene. We show that Trem2 expression in the nonparenchymal liver cells closely correlates with resistance to liver stage infection, implicating TREM2 as a mediator of the belr1 genetic effect. Trem2-deficient mice are more susceptible to liver stage infection than their WT counterparts. We found that Kupffer cells are the principle cells expressing TREM2 in the liver, and that Trem2(-/-) Kupffer cells display altered functional activation on exposure to P. berghei sporozoites. TREM2 expression in Kupffer cells contributes to the limitation of parasite expansion in isolated hepatocytes in vitro, potentially explaining the increased susceptibility of Trem2(-/-) mice to liver stage infection. The MHC locus was also found to control liver parasite burden, possibly owing to the expression of MHC class II molecules in hepatocytes. Our findings implicate unexpected Kupffer-hepatocyte cross-talk in the control Plasmodium liver stage infection and demonstrate that TREM2 is involved in host responses against the malaria parasite.


Assuntos
Imunidade Inata/imunologia , Células de Kupffer/imunologia , Fígado/imunologia , Fígado/parasitologia , Malária/imunologia , Glicoproteínas de Membrana/metabolismo , Plasmodium berghei/imunologia , Receptores Imunológicos/metabolismo , Animais , Primers do DNA/genética , Citometria de Fluxo , Loci Gênicos/genética , Loci Gênicos/imunologia , Genótipo , Camundongos , Repetições de Microssatélites/genética , Estatísticas não Paramétricas
15.
PLoS Pathog ; 9(1): e1003154, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23382682

RESUMO

Malaria in pregnancy is exquisitely aggressive, causing a range of adverse maternal and fetal outcomes prominently linked to Plasmodium-infected erythrocyte cytoadherence to fetal trophoblast. To elucidate the physiopathology of infected erythrocytes (IE) sequestration in the placenta we devised an experimental system for intravital placental examination of P. berghei-infected mice. BALB/c females were mated to C57Bl/6 CFP+ male mice and infected with GFP+ P. berghei IE, and at gestational day 18, placentas were exposed for time-lapse imaging acquisition under two-photon microscopy. Real-time images and quantitative measurements revealed that trophoblast conformational changes transiently restrain blood flow in the mouse placental labyrinth. The complex dynamics of placental microcirculation promotes IE accumulation in maternal blood spaces with low blood flow and allows the establishment of stable IE-trophoblast contacts. Further, we show that the fate of sequestered IE includes engulfment by both macrophagic and trophoblastic fetal-derived cells. These findings reinforce the current paradigm that IE interact with the trophoblast and provide definitive evidence on two novel pathogenesis mechanisms: (1) trophoblast layer controls placental microcirculation promoting IE sequestration; and (2) fetal-derived placental cells engulf sequestered IE.


Assuntos
Eritrócitos/parasitologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Placenta/patologia , Plasmodium berghei/fisiologia , Complicações Parasitárias na Gravidez , Animais , Velocidade do Fluxo Sanguíneo , Eritrócitos/patologia , Feminino , Imageamento Tridimensional/métodos , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária/imunologia , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microcirculação/fisiologia , Fagocitose/fisiologia , Placenta/irrigação sanguínea , Placenta/parasitologia , Gravidez , Trofoblastos/metabolismo , Trofoblastos/parasitologia
16.
Malar J ; 14: 393, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26445879

RESUMO

BACKGROUND: Haemoglobin S (HbS) is the gene known to confer the strongest advantage against malaria morbidity and mortality. Multiple HbS effects have been described resulting in protection against parasitaemia and reduction of severe malaria risk. This study aimed to explore HbS protection against severe malaria and Plasmodium falciparum parasitaemia in Angolan children exhibiting different severe malaria syndromes. METHODS: A case-control study was designed with 430 malaria cases (n = 288 severe malaria and n = 142 uncomplicated malaria) and 319 uninfected controls, attending a central paediatric hospital in Luanda. Severe malaria syndromes were cerebral malaria (n = 130), severe malaria anaemia (n = 30) and hyperparasitaemia (n = 128). Quantitative trait locus analysis was carried out to study HbS association to parasite densities. RESULTS: Previously reported HbS protection against severe malaria was confirmed in case-control analysis (P = 2 × 10(-13)) and corroborated by transmission disequilibrium test (P = 4 × 10(-3)). High parasite density protection conferred by HbS was detectable within severe malaria patients (P = 0.04). Stratifying severe malaria patients according parasite densities, it was found that HbS was highly associated to hyperparasitaemia protection (P = 1.9 × 10(-9)) but did not protect non-hyperparasitaemic children against severe malaria complications, namely cerebral malaria and severe malaria anaemia. Many studies have shown that HbS protects from severe malaria and controls parasite densities but the analysis further suggests that HbS protection against severe malaria syndromes was at a large extent correlated with control of parasitaemia levels. CONCLUSIONS: This study supports the hypothesis that HbS confers resistance to hyperparasitaemia in patients exhibiting severe malaria syndromes and highlights that parasitaemia should be taken into account when evaluating HbS protection in severe malaria.


Assuntos
Hemoglobina Falciforme/genética , Malária Falciparum/genética , Malária Falciparum/parasitologia , Parasitemia/genética , Locos de Características Quantitativas , Adolescente , Anemia/parasitologia , Anemia/patologia , Angola , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Resistência à Doença , Feminino , Humanos , Lactente , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Malária Falciparum/patologia , Masculino
17.
J Immunol ; 190(10): 5118-27, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23585679

RESUMO

Development of cerebral malaria (CM), a severe and fatal form of clinical Plasmodium falciparum infection, results from a damaging cascade of vascular, inflammatory, and immunological host responses that leads to brain injury. Progression to CM can be modified by host genetic factors. Our case-control study in Angolan children aimed at highlighting the role of IFN (α, ß) receptor 1 (IFNAR1) in progression to CM. We report a robust association between IFNAR1 and CM protection, as well as detailed studies showing analogous protection from experimental CM in Ifnar1(-/-) mice infected with P. berghei ANKA. We developed a novel cell-transfer protocol that enables spleen cell priming in the absence of disease. This led to the discovery that IFNAR1 expression in CD8(+) T cells is crucial and can abrogate resistance to experimental CM in Ifnar1(-/-) mice. Splenic CD8(+) T cells from Ifnar1(-/-) mice are functionally activated upon infection, yet are unable to mediate experimental CM development within the brain tissue. Our findings prove that IFNAR1 signaling unleashes CD8(+) T cell effector capacity, which is vital for CM, and raises the hypothesis that the cohesive role of IFNAR1 in both human and mouse CM operates through CD8(+) T cell triggering.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Malária Cerebral/imunologia , Receptor de Interferon alfa e beta/metabolismo , Adolescente , Animais , Encéfalo/imunologia , Encefalopatias/imunologia , Encefalopatias/parasitologia , Linfócitos T CD8-Positivos/parasitologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Expressão Gênica , Genótipo , Humanos , Lactente , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium berghei/imunologia , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Baço/imunologia
18.
Infect Immun ; 82(3): 1287-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24379293

RESUMO

Nitric oxide (NO) is a proposed component of malaria pathogenesis, and the inducible nitric oxide synthase gene (NOS2) has been associated to malaria susceptibility. We analyzed the role of NOS2 polymorphisms on NO bioavailability and on susceptibility to infection, Plasmodium carrier status and clinical malaria. Two distinct West African sample collections were studied: a population-based collection of 1,168 apparently healthy individuals from the Príncipe Island and a hospital-based cohort of 269 Angolan children. We found that two NOS2 promoter single-nucleotide polymorphism (SNP) alleles associated to low NO plasma levels in noninfected individuals were also associated to reduced risk of pre-erythrocytic infection as measured anti-CSP antibody levels (6.25E-04 < P < 7.57E-04). In contrast, three SNP alleles within the NOS2 cistronic region conferring increased NO plasma levels in asymptomatic carriers were strongly associated to risk of parasite carriage (8.00E-05 < P < 7.90E-04). Notwithstanding, three SNP alleles in this region protected from cerebral malaria (7.90E-4 < P < 4.33E-02). Cohesively, the results revealed a dual regimen in the genetic control of NO bioavailability afforded by NOS2 depending on the infection status. NOS2 promoter variants operate in noninfected individuals to decrease both NO bioavailability and susceptibility to pre-erythrocytic infection. Conversely, NOS2 cistronic variants (namely, rs6505469) operate in infected individuals to increase NO bioavailability and confer increased susceptibility to unapparent infection but protect from cerebral malaria. These findings corroborate the hypothesis that NO anti-inflammatory properties impact on different steps of malaria pathogenesis, explicitly by favoring infection susceptibility and deterring severe malaria syndromes.


Assuntos
Malária Cerebral/genética , Malária/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico/sangue , Alelos , Biomarcadores/sangue , Humanos , Malária/sangue , Malária Cerebral/sangue , Plasmodium , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética
19.
Mol Biol Rep ; 41(11): 7133-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25037274

RESUMO

Autoimmune diseases (ADs) share several genetic factors resulting in similarity of disease mechanisms. For instance polymorphisms from the KIAA1109-interleukin 2 (IL2)-IL21 block in the 4q27 chromosome, has been associated with a number of autoimmune phenotypes. Here we performed a haplotype-based analysis of this AD related region in Tunisian patients. Ten single nucleotide polymorphisms (rs6534347, rs11575812, rs2069778, rs2069763, rs2069762, rs6852535, rs12642902, rs6822844, rs2221903, rs17005931) of the block were investigated in a cohort of 93 systemic lupus erythematosus (SLE), 68 ulcerative colitis (UC), 39 Crohn's disease (CD) patients and 162 healthy control subjects of Tunisian origin. In SLE population, haplotypes AGCAGGGTC, AGAAGAGTC, AGAAGGGTC and AGCCGAGTC provided significant evidence of association with SLE risk (p = 0.013, 0.028, 0.018 and 0.048, respectively). In the UC population, haplotype AGCCGGGTC provided a susceptibility effect for UC (p = 0.025). In the CD population, haplotype CAGGCC showed a protective effect against the development of CD (p = 0.038). Haplotype AAGGTT provided significant evidence to be associated with CD risk (p = 0.007). Our results support the existence of the associations found in the KIAA1109/IL2/IL21 gene region with ADs, thus confirms that the 4q27 locus may contribute to the genetic susceptibility of ADs in the Tunisian population.


Assuntos
Doenças Autoimunes/genética , Cromossomos Humanos Par 4/genética , Interleucina-2/genética , Proteínas/genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único/genética , Tunísia
20.
J Diabetes Res ; 2024: 3076895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364395

RESUMO

Aims: This study is aimed at comparing whole exome sequencing (WES) data with the clinical presentation in children with type 1 diabetes onset ≤ 5 years of age (EOT1D). Methods: WES was performed in 99 unrelated children with EOT1D with subsequent analysis to identify potentially deleterious rare variants in MODY genes. High-resolution HLA class II haplotyping, SNP genotyping, and T1D-genetic risk score (T1D-GRS) were also evaluated. Results: Eight of the ninety-nine EOT1D participants carried a potentially deleterious rare variant in a MODY gene. Rare variants affected five genes: GCK (n = 1), HNF1B (n = 2), HNF4A (n = 1), PDX1 (n = 2), and RFX6 (n = 2). At diagnosis, these children had a mean age of 3.0 years, a mean HbA1c of 10.5%, a detectable C-peptide in 5/8, and a positive islet autoantibody in 6/7. Children with MODY variants tend to exhibit a lower number of pancreatic autoantibodies and a lower fasting C-peptide compared to EOT1D without MODY rare variants. They also carried at least one high-risk DR3-DQ2 or DR4-DQ8 haplotype and exhibited a T1D-GRS similar to the other individuals in the EOT1D cohort, but higher than healthy controls. Conclusions: WES found potentially deleterious rare variants in MODY genes in 8.1% of EOT1D, occurring in the context of a T1D genetic background. Such genetic variants may contribute to disease precipitation by a ß-cell dysfunction mechanism. This supports the concept of different endotypes of T1D, and WES at T1D onset may be a prerequisite for the implementation of precision therapies in children with autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Sequenciamento do Exoma , Predisposição Genética para Doença , Humanos , Diabetes Mellitus Tipo 1/genética , Pré-Escolar , Feminino , Masculino , Fator 1-beta Nuclear de Hepatócito/genética , Transativadores/genética , Proteínas de Homeodomínio/genética , Fator 4 Nuclear de Hepatócito/genética , Quinases do Centro Germinativo/genética , Polimorfismo de Nucleotídeo Único , Lactente , Peptídeo C/sangue , Autoanticorpos , Criança , Haplótipos , Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Fatores de Transcrição de Fator Regulador X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa