Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 315, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35778686

RESUMO

BACKGROUND: Genome-Wide Association Studies (GWAS) are used to identify genes and alleles that contribute to quantitative traits in large and genetically diverse populations. However, traits with complex genetic architectures create an enormous computational load for discovery of candidate genes with acceptable statistical certainty. We developed a streamlined computational pipeline for GWAS (COMPILE) to accelerate identification and annotation of candidate maize genes associated with a quantitative trait, and then matches maize genes to their closest rice and Arabidopsis homologs by sequence similarity. RESULTS: COMPILE executed GWAS using a Mixed Linear Model that incorporated, without compression, recent advancements in population structure control, then linked significant Quantitative Trait Loci (QTL) to candidate genes and RNA regulatory elements contained in any genome. COMPILE was validated using published data to identify QTL associated with the traits of α-tocopherol biosynthesis and flowering time, and identified published candidate genes as well as additional genes and non-coding RNAs. We then applied COMPILE to 274 genotypes of the maize Goodman Association Panel to identify candidate loci contributing to resistance of maize stems to penetration by larvae of the European Corn Borer (Ostrinia nubilalis). Candidate genes included those that encode a gene of unknown function, WRKY and MYB-like transcriptional factors, receptor-kinase signaling, riboflavin synthesis, nucleotide-sugar interconversion, and prolyl hydroxylation. Expression of the gene of unknown function has been associated with pathogen stress in maize and in rice homologs closest in sequence identity. CONCLUSIONS: The relative speed of data analysis using COMPILE allowed comparison of population size and compression. Limitations in population size and diversity are major constraints for a trait and are not overcome by increasing marker density. COMPILE is customizable and is readily adaptable for application to species with robust genomic and proteome databases.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Genômica , Oryza/genética , Fenótipo , Locos de Características Quantitativas/genética , Zea mays/genética
2.
Plant Cell ; 31(5): 1094-1112, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30914498

RESUMO

The plant endoplasmic reticulum-Golgi apparatus is the site of synthesis, assembly, and trafficking of all noncellulosic polysaccharides, proteoglycans, and proteins destined for the cell wall. As grass species make cell walls distinct from those of dicots and noncommelinid monocots, it has been assumed that the differences in cell-wall composition stem from differences in biosynthetic capacities of their respective Golgi. However, immunosorbence-based screens and carbohydrate linkage analysis of polysaccharides in Golgi membranes, enriched by flotation centrifugation from etiolated coleoptiles of maize (Zea mays) and leaves of Arabidopsis (Arabidopsis thaliana), showed that arabinogalactan-proteins and arabinans represent substantial portions of the Golgi-resident polysaccharides not typically found in high abundance in cell walls of either species. Further, hemicelluloses accumulated in Golgi at levels that contrasted with those found in their respective cell walls, with xyloglucans enriched in maize Golgi, and xylans enriched in Arabidopsis. Consistent with this finding, maize Golgi membranes isolated by flotation centrifugation and enriched further by free-flow electrophoresis, yielded >200 proteins known to function in the biosynthesis and metabolism of cell-wall polysaccharides common to all angiosperms, and not just those specific to cell-wall type. We propose that the distinctive compositions of grass primary cell walls compared with other angiosperms result from differential gating or metabolism of secreted polysaccharides post-Golgi by an as-yet unknown mechanism, and not necessarily by differential expression of genes encoding specific synthase complexes.


Assuntos
Glicômica , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Transporte Biológico , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Magnoliopsida/genética , Magnoliopsida/ultraestrutura , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/ultraestrutura
3.
BMC Genomics ; 20(1): 785, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664907

RESUMO

BACKGROUND: The cellular machinery for cell wall synthesis and metabolism is encoded by members of large multi-gene families. Maize is both a genetic model for grass species and a potential source of lignocellulosic biomass from crop residues. Genetic improvement of maize for its utility as a bioenergy feedstock depends on identification of the specific gene family members expressed during secondary wall development in stems. RESULTS: High-throughput sequencing of transcripts expressed in developing rind tissues of stem internodes provided a comprehensive inventory of cell wall-related genes in maize (Zea mays, cultivar B73). Of 1239 of these genes, 854 were expressed among the internodes at ≥95 reads per 20 M, and 693 of them at ≥500 reads per 20 M. Grasses have cell wall compositions distinct from non-commelinid species; only one-quarter of maize cell wall-related genes expressed in stems were putatively orthologous with those of the eudicot Arabidopsis. Using a slope-metric algorithm, five distinct patterns for sub-sets of co-expressed genes were defined across a time course of stem development. For the subset of genes associated with secondary wall formation, fifteen sequence motifs were found in promoter regions. The same members of gene families were often expressed in two maize inbreds, B73 and Mo17, but levels of gene expression between them varied, with 30% of all genes exhibiting at least a 5-fold difference at any stage. Although presence-absence and copy-number variation might account for much of these differences, fold-changes of expression of a CADa and a FLA11 gene were attributed to polymorphisms in promoter response elements. CONCLUSIONS: Large genetic variation in maize as a species precludes the extrapolation of cell wall-related gene expression networks even from one common inbred line to another. Elucidation of genotype-specific expression patterns and their regulatory controls will be needed for association panels of inbreds and landraces to fully exploit genetic variation in maize and other bioenergy grass species.


Assuntos
Parede Celular/genética , Caules de Planta/genética , Transcriptoma , Zea mays/genética , Arabidopsis/genética , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Celulose/biossíntese , Lignina/biossíntese , Família Multigênica , Melhoramento Vegetal , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Regiões Promotoras Genéticas , Xilanos/biossíntese , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/ultraestrutura
4.
Phytopathology ; 108(6): 748-758, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29287150

RESUMO

The recent rapid emergence of maize lethal necrosis (MLN), caused by coinfection of maize with Maize chlorotic mottle virus (MCMV) and a second virus usually from the family Potyviridae, is causing extensive losses for farmers in East Africa, Southeast Asia, and South America. Although the genetic basis of resistance to potyviruses is well understood in maize, little was known about resistance to MCMV. The responses of five maize inbred lines (KS23-5, KS23-6, N211, DR, and Oh1VI) to inoculation with MCMV, Sugarcane mosaic virus, and MLN were characterized. All five lines developed fewer symptoms than susceptible controls after inoculation with MCMV; however, the virus was detected in systemic leaf tissue from each of the lines similarly to susceptible controls, indicating that the lines were tolerant of MCMV rather than resistant to it. Except for KS23-5, the inbred lines also developed fewer symptoms after inoculation with MLN than susceptible controls. To identify genetic loci associated with MCMV tolerance, large F2 or recombinant inbred populations were evaluated for their phenotypic responses to MCMV, and the most resistant and susceptible plants were genotyped by sequencing. One to four quantitative trait loci (QTL) were identified in each tolerant population using recombination frequency and positional mapping strategies. In contrast to previous studies of virus resistance in maize, the chromosomal positions and genetic character of the QTL were unique to each population. The results suggest that different, genotype-specific mechanisms are associated with MCMV tolerance in maize. These results will allow for the development of markers for marker-assisted selection of MCMV- and MLN-tolerant maize hybrids for disease control.


Assuntos
Cromossomos de Plantas/genética , Gammaherpesvirinae , Doenças das Plantas/genética , Doenças das Plantas/virologia , Locos de Características Quantitativas/genética , Zea mays/genética , Mapeamento Cromossômico , Predisposição Genética para Doença , Genótipo
5.
Plant Physiol ; 165(4): 1475-1487, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972714

RESUMO

Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.

6.
Theor Appl Genet ; 128(11): 2331-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26239408

RESUMO

KEY MESSAGE: In this paper, we determine the genetic architecture controlling leaf flecking in maize and investigate its relationship to disease resistance and the defense response. Flecking is defined as a mild, often environmentally dependent lesion phenotype observed on the leaves of several commonly used maize inbred lines. Anecdotal evidence suggests a link between flecking and enhanced broad-spectrum disease resistance. Neither the genetic basis underlying flecking nor its possible relationship to disease resistance has been systematically evaluated. The commonly used maize inbred Mo17 has a mild flecking phenotype. The IBM-advanced intercross mapping population, derived from a cross between Mo17 and another commonly used inbred B73, has been used for mapping a number of traits in maize including several related to disease resistance. In this study, flecking was assessed in the IBM population over 6 environments. Several quantitative trait loci for flecking were identified, with the strongest one located on chromosome 6. Low but moderately significant correlations were observed between stronger flecking and higher disease resistance with respect to two diseases, southern leaf blight and northern leaf blight and between stronger flecking and a stronger defense response.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Zea mays/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Fenótipo , Folhas de Planta
7.
Nature ; 457(7229): 551-6, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19189423

RESUMO

Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Poaceae/genética , Sorghum/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Duplicação Gênica , Genes de Plantas , Oryza/genética , Populus/genética , Recombinação Genética/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência/genética , Zea mays/genética
8.
Front Plant Sci ; 14: 1137808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346135

RESUMO

Soft winter wheat has been adapted to the north-central, north-western, and south-central United States over hundreds of years for optimal yield, height, heading date, and pathogen and pest resistance. Environmental factors like weather affect abiotic traits such as pre-harvest sprouting resistance. However, pre-harvest sprouting has rarely been a target for breeding. Owing to changing weather patterns from climate change, pre-harvest sprouting resistance is needed to prevent significant crop losses not only in the United States, but worldwide. Twenty-two traits including age of breeding line as well as agronomic, flour quality, and pre-harvest sprouting traits were studied in a population of 188 lines representing genetic diversity over 200 years of soft winter wheat breeding. Some traits were correlated with one another by principal components analysis and Pearson's correlations. A genome-wide association study using 1,978 markers uncovered a total of 102 regions encompassing 226 quantitative trait nucleotides. Twenty-six regions overlapped multiple traits with common significant markers. Many of these traits were also found to be correlated by Pearson's correlation and principal components analyses. Most pre-harvest sprouting regions were not co-located with agronomic traits and thus useful for crop improvement against climate change without affecting crop performance. Six different genome-wide association statistical models (GLM, MLM, MLMM, FarmCPU, BLINK, and SUPER) were utilized to search for reasonable models to analyze soft winter wheat populations with increased markers and/or breeding lines going forward. Some flour quality and agronomic traits seem to have been selected over time, but not pre-harvest sprouting. It appears possible to select for pre-harvest sprouting resistance without impacting flour quality or the agronomic value of soft winter wheat.

9.
Plant Physiol ; 151(4): 1703-28, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19926802

RESUMO

Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.


Assuntos
Parede Celular/genética , Parede Celular/fisiologia , Zea mays/genética , Arabidopsis/genética , Metabolismo dos Carboidratos/genética , Carboidratos/biossíntese , Elementos de DNA Transponíveis/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Família Multigênica/genética , Mutagênese Insercional/genética , Mutação/genética , Nucleotídeos/metabolismo , Oryza/genética , Fenótipo , Propanóis/metabolismo , Especificidade por Substrato/genética , Zea mays/citologia
10.
Front Plant Sci ; 10: 1205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681352

RESUMO

Grasses and related commelinid monocot species synthesize cell walls distinct in composition from other angiosperm species. With few exceptions, the genomes of all angiosperms contain the genes that encode the enzymes for synthesis of all cell-wall polysaccharide, phenylpropanoid, and protein constituents known in vascular plants. RNA-seq analysis of transcripts expressed during development of the upper and lower internodes of maize (Zea mays) stem captured the expression of cell-wall-related genes associated with primary or secondary wall formation. High levels of transcript abundances were not confined to genes associated with the distinct walls of grasses but also of those associated with xyloglucan and pectin synthesis. Combined with proteomics data to confirm that expressed genes are translated, we propose that the distinctive cell-wall composition of grasses results from sorting downstream from their sites of synthesis in the Golgi apparatus and hydrolysis of the uncharacteristic polysaccharides and not from differential expression of synthases of grass-specific polysaccharides.

11.
Plant Signal Behav ; 14(12): 1672513, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564200

RESUMO

The Endoplasmic Reticulum (ER)-Golgi apparatus of plants is the site of synthesis of non-cellulosic polysaccharides that then traffic to the cell wall. A two-step protocol of flotation centrifugation followed by free-flow electrophoresis (FFE) resolved ER and Golgi proteins into three profiles: an ER-rich fraction, two Golgi-rich fractions, and an intermediate fraction enriched in cellulose synthases. Nearly three dozen Rab-like proteins of eight different subgroups were distributed differentially in ER- vs. Golgi-rich fractions, whereas seven 14-3-3 proteins co-fractionated with cellulose synthases in the intermediate fraction. FFE offers a powerful means to classify resident and transient proteins in cell-free assays of cellular location.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Zea mays/metabolismo , Eletroforese , Chaperonas Moleculares/metabolismo , Transporte Proteico
12.
Front Plant Sci ; 3: 187, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22936938

RESUMO

Despite differences in cell wall composition between the type I cell walls of dicots and most monocots and the type II walls of commelinid monocots, all flowering plants respond to the same classes of growth regulators in the same tissue-specific way and exhibit the same growth physics. Substantial progress has been made in defining gene families and identifying mutants in cell wall-related genes, but our understanding of the biochemical basis of wall extensibility during growth is still rudimentary. In this review, we highlight insights into the physiological control of cell expansion emerging from genetic functional analyses, mostly in Arabidopsis and other dicots, and a few examples of genes of potential orthologous function in grass species. We discuss examples of cell wall architectural features that impact growth independent of composition, and progress in identifying proteins involved in transduction of growth signals and integrating their outputs in the molecular machinery of wall expansion.

13.
Genome ; 47(5): 961-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15499410

RESUMO

Disease lesion mimics provide an excellent biological system to study the genetic basis of cell death in plants. Many lesion mimics show variation in phenotype expression in different genetic backgrounds. Our goal was to identify quantitative trait loci (QTL) modifying lesion mimic expression thereby identifying genetic modifiers of cell death. A recessive lesion mimic, les23, in a severe-expressing line was crossed to the maize inbred line Mo20W, a lesion-suppressing line, and an F(2) population was developed for QTL analysis. In addition to locating les23 to the short arm of chromosome 2, this analysis detected significant loci for modification of lesion expression. One highly significant locus was found on the long arm of chromosome 2. The Mo20W allele at this QTL significantly delayed initiation of the lesion phenotype and decreased the final lesion severity. Other QTL with lesser effect affected severity of lesion expression without affecting lesion initiation date. Our results demonstrate that dramatic change in lesion phenotype can be controlled by a single major QTL. The presumed function of this QTL in normal plants is to regulate some aspect of the cell death pathway underlying the les23 phenotype.


Assuntos
Alelos , Morte Celular/genética , Genes de Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Mutação/genética , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa