Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Prog ; 39(4): e3350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37186510

RESUMO

Ultrafiltration/diafiltration (UF/DF) has been the hallmark for concentrating and buffer exchange of protein and peptide-based therapeutics for years. Here we examine the capabilities and limitations of UF/DF membranes to process oligonucleotides using antisense oligonucleotides (ASOs) as a model. Using a 3 kDa UF/DF membrane, oligonucleotides as small as 6 kDa are shown to have low sieving coefficients (<0.008) and thus can be concentrated to high concentrations (≤200 mg/mL) with high yield (≥95%) and low viscosity (<15 centipoise), provided the oligonucleotide is designed not to undergo self-hybridization. In general, the oligonucleotide should be at least twice the reported membrane molecular weight cutoff for robust retention. Regarding diafiltration, results show that a small amount of salt is necessary to maintain adequate flux at concentrations exceeding about 40 mg/mL. Removal of salts along with residual solvents and small molecule process-related impurities can be robust provided they are not positively charged as the interaction with the oligonucleotide can prevent passage through the membrane, even for common divalent cations such as calcium or magnesium. Overall, UF/DF is a valuable tool to utilize in oligonucleotide processing, especially as a final drug substance formulation step that enables a liquid active pharmaceutical ingredient.


Assuntos
Oligonucleotídeos Antissenso , Ultrafiltração , Ultrafiltração/métodos , Oligonucleotídeos Antissenso/genética , Proteínas , Cálcio
2.
ACS Appl Bio Mater ; 2(8): 3562-3572, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35030742

RESUMO

Three-dimensional matrices of collagen type I (Col I) are widely used in tissue engineering applications for its abundance in many tissues, bioactivity with many cell types, and excellent biocompatibility. Inspired by the structural role of lignin in a plant tissue, we found that sodium lignosulfonate (SLS) and an alkali-extracted lignin from switchgrass (SG) increased the stiffness of Col I gels. SLS and SG enhanced the stiffness of Col I gels from 52 to 670 Pa and 52 to 320 Pa, respectively, and attenuated shear-thinning properties, with the formulation of 1.8 mg/mL Col I and 5.0 mg/mL SLS or SG. In 2D cultures, the cytotoxicity of collagen-SLS to adipose-derived stromal cells was not observed and the cell viability was maintained over 7 days in 3D cultures. Collagen-SLS composites did not elicit immunogenicity when compared to SLS-only groups. Our collagen-SLS composites present a case that exploits lignins as an enhancer of mechanical properties of Col I without adverse cytotoxicity and immunogenicity for in vitro scaffolds or in vivo tissue repairs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa