Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 69(5): 1184-1203, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33368703

RESUMO

Primary cilia are small microtubule-based organelles capable of transducing signals from growth factor receptors embedded in the cilia membrane. Developmentally, oligodendrocyte progenitor cells (OPCs) express genes associated with primary cilia assembly, disassembly, and signaling, however, the importance of primary cilia for adult myelination has not been explored. We show that OPCs are ciliated in vitro and in vivo, and that they disassemble their primary cilia as they progress through the cell cycle. OPC primary cilia are also disassembled as OPCs differentiate into oligodendrocytes. When kinesin family member 3a (Kif3a), a gene critical for primary cilium assembly, was conditionally deleted from adult OPCs in vivo (Pdgfrα-CreER™:: Kif3a fl/fl transgenic mice), OPCs failed to assemble primary cilia. Kif3a-deletion was also associated with reduced OPC proliferation and oligodendrogenesis in the corpus callosum and motor cortex and a progressive impairment of fine motor coordination.


Assuntos
Células-Tronco Adultas , Células Precursoras de Oligodendrócitos , Animais , Diferenciação Celular , Cílios , Cinesinas/genética , Camundongos , Camundongos Transgênicos , Oligodendroglia
2.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662300

RESUMO

Neurotransmitter is released from dedicated sites of synaptic vesicle fusion within a synapse. Following fusion, the vacated sites are replenished immediately by new vesicles for subsequent neurotransmission. These replacement vesicles are assumed to be located near release sites and used by chance. Here, we find that replacement vesicles are clustered around this region by Intersectin-1. Specifically, Intersectin-1 forms dynamic molecular condensates with Endophilin A1 near release sites and sequesters vesicles around this region. In the absence of Intersectin-1, vesicles within 20 nm of the plasma membrane are reduced, and consequently, vacated sites cannot be replenished rapidly, leading to depression of synaptic transmission. Similarly, mutations in Intersectin-1 that disrupt Endophilin A1 binding result in similar phenotypes. However, in the absence of Endophilin, this replacement pool of vesicles is available but cannot be accessed, suggesting that Endophilin A1 is needed to mobilize these vesicles. Thus, our work describes a distinct physical region within a synapse where replacement vesicles are harbored for release site replenishment.

3.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503105

RESUMO

Axons are thought to be ultrathin membrane cables of a relatively uniform diameter, designed to conduct electrical signals, or action potentials. Here, we demonstrate that unmyelinated axons are not simple cylindrical tubes. Rather, axons have nanoscopic boutons repeatedly along their length interspersed with a thin cable with a diameter of ∼60 nm like pearls-on-a-string. These boutons are only ∼200 nm in diameter and do not have synaptic contacts or a cluster of synaptic vesicles, hence non-synaptic. Our in silico modeling suggests that axon pearling can be explained by the mechanical properties of the membrane including the bending modulus and tension. Consistent with modeling predictions, treatments that disrupt these parameters like hyper- or hypo-tonic solutions, cholesterol removal, and non-muscle myosin II inhibition all alter the degree of axon pearling, suggesting that axon morphology is indeed determined by the membrane mechanics. Intriguingly, neuronal activity modulates the cholesterol level of plasma membrane, leading to shrinkage of axon pearls. Consequently, the conduction velocity of action potentials becomes slower. These data reveal that biophysical forces dictate axon morphology and function and that modulation of membrane mechanics likely underlies plasticity of unmyelinated axons.

4.
Cell Rep ; 34(3): 108641, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472075

RESUMO

Central nervous system myelination increases action potential conduction velocity. However, it is unclear how myelination is coordinated to ensure the temporally precise arrival of action potentials and facilitate information processing within cortical and associative circuits. Here, we show that myelin sheaths, supported by mature oligodendrocytes, remain plastic in the adult mouse brain and undergo subtle structural modifications to influence action potential conduction velocity. Repetitive transcranial magnetic stimulation and spatial learning, two stimuli that modify neuronal activity, alter the length of the nodes of Ranvier and the size of the periaxonal space within active brain regions. This change in the axon-glial configuration is independent of oligodendrogenesis and robustly alters action potential conduction velocity. Because aptitude in the spatial learning task was found to correlate with action potential conduction velocity in the fimbria-fornix pathway, modifying the axon-glial configuration may be a mechanism that facilitates learning in the adult mouse brain.


Assuntos
Potenciais de Ação/genética , Axônios/metabolismo , Encéfalo/fisiopatologia , Animais , Camundongos
5.
Front Cell Dev Biol ; 8: 564351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282858

RESUMO

Low-density lipoprotein receptor-related protein 1 (LRP1) is a large, endocytic cell surface receptor that is highly expressed by oligodendrocyte progenitor cells (OPCs) and LRP1 expression is rapidly downregulated as OPCs differentiate into oligodendrocytes (OLs). We report that the conditional deletion of Lrp1 from adult mouse OPCs (Pdgfrα-CreER :: Lrp1 fl/fl ) increases the number of newborn, mature myelinating OLs added to the corpus callosum and motor cortex. As these additional OLs extend a normal number of internodes that are of a normal length, Lrp1-deletion increases adult myelination. OPC proliferation is also elevated following Lrp1 deletion in vivo, however, this may be a secondary, homeostatic response to increased OPC differentiation, as our in vitro experiments show that LRP1 is a direct negative regulator of OPC differentiation, not proliferation. Deleting Lrp1 from adult OPCs also increases the number of newborn mature OLs added to the corpus callosum in response to cuprizone-induced demyelination. These data suggest that the selective blockade of LRP1 function on adult OPCs may enhance myelin repair in demyelinating diseases such as multiple sclerosis.

6.
Front Cell Neurosci ; 12: 399, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524235

RESUMO

Oligodendrocyte progenitor cells (OPCs) are immature cells in the central nervous system (CNS) that can rapidly respond to changes within their environment by modulating their proliferation, motility and differentiation. OPCs differentiate into myelinating oligodendrocytes throughout life, and both cell types have been implicated in maintaining and modulating neuronal function to affect motor performance, cognition and emotional state. However, questions remain about the mechanisms employed by OPCs and oligodendrocytes to regulate circuit function, including whether OPCs can only influence circuits through their generation of new oligodendrocytes, or can play other regulatory roles within the CNS. In this review, we detail the molecular and cellular mechanisms that allow OPCs, newborn oligodendrocytes and pre-existing oligodendrocytes to regulate circuit function and ultimately influence behavioral outcomes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa