Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Manage ; 68(4): 445-452, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341867

RESUMO

The Tocantins-Araguaia Basin is one of the largest river systems in South America, located entirely within Brazilian territory. In the last decades, capital-concentrating activities such as agribusiness, mining, and hydropower promoted extensive changes in land cover, hydrology, and environmental conditions. These changes are jeopardizing the basin's biodiversity and ecosystem services. Threats are escalating as poor environmental policies continue to be formulated, such as environmentally unsustainable hydropower plants, large-scale agriculture for commodity production, and aquaculture with non-native fish. If the current model persists, it will deepen the environmental crisis in the basin, compromising broad conservation goals and social development in the long term. Better policies will require thought and planning to minimize growing threats and ensure the basin's sustainability for future generations.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Conservação dos Recursos Naturais , Política Ambiental
2.
Ecol Evol ; 14(5): e11334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694759

RESUMO

Animal trait data are scattered across several datasets, making it challenging to compile and compare trait information across different groups. For plants, the TRY database has been an unwavering success for those ecologists interested in addressing how plant traits influence a wide variety of processes and patterns, but the same is not true for most animal taxonomic groups. Here, we introduce ZooTraits, a Shiny app designed to help users explore and obtain animal trait data for research in ecology and evolution. ZooTraits was developed to tackle the challenge of finding in a single site information of multiple trait datasets and facilitating access to traits by providing an easy-to-use, open-source platform. This app combines datasets centralized in the Open Trait Network, raw data from the AnimalTraits database, and trait information for animals compiled by Gonçalves-Souza et al. (2023, Ecology and Evolution 13, e10016). Importantly, the ZooTraits app can be accessed freely and provides a user-friendly interface through three functionalities that will allow users to easily visualize, compare, download, and upload trait data across the animal tree of life-ExploreTrait, FeedTrait, and GetTrait. By using ExploreTrait and GetTrait, users can explore, compare, and extract 3954 trait records from 23,394 species centralized in the Open Traits Network, and trait data for ~2000 species from the AnimalTraits database. The app summarizes trait information for numerous taxonomic groups within the Animal Kingdom, encompassing data from diverse aquatic and terrestrial ecosystems and various geographic regions worldwide. Moreover, ZooTraits enables researchers to upload trait information, serving as a hub for a continually expanding global trait database. By promoting the centralization of trait datasets and offering a platform for data sharing, ZooTraits is facilitating advancements in trait-based ecological and evolutionary studies. We hope that other trait databases will evolve to mirror the approach we have outlined here.

3.
Ecol Evol ; 13(4): e10016, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091571

RESUMO

Trait-based approaches elucidate the mechanisms underlying biodiversity response to, or effects on, the environment. Nevertheless, the Raunkiæran shortfall-the dearth of knowledge on species traits and their functionality-presents a challenge in the application of these approaches. We conducted a systematic review to investigate the trends and gaps in trait-based animal ecology in terms of taxonomic resolution, trait selection, ecosystem type, and geographical region. In addition, we suggest a set of crucial steps to guide trait selection and aid future research to conduct within and cross-taxon comparisons. We identified 1655 articles using virtually all animal groups published from 1999 to 2020. Studies were concentrated in vertebrates, terrestrial habitats, the Palearctic realm, and mostly investigated trophic and habitat dimensions. Additionally, they focused on response traits (79.4%) and largely ignored intraspecific variation (94.6%). Almost 36% of the data sets did not provide the rationale behind the selection of morphological traits. The main limitations of trait-based animal ecology were the use of trait averages and a rare inclusion of intraspecific variability. Nearly one-fifth of the studies based only on response traits conclude that trait diversity impacts ecosystem processes or services without justifying the connection between them or measuring them. We propose a guide for standardizing trait collection that includes the following: (i) determining the type of trait and the mechanism linking the trait to the environment, ecosystem, or the correlation between the environment, trait, and ecosystem, (ii) using a "periodic table of niches" to select the appropriate niche dimension to support a mechanistic trait selection, and (iii) selecting the relevant traits for each retained niche dimension. By addressing these gaps, trait-based animal ecology can become more predictive. This implies that future research will likely focus on collaborating to understand how environmental changes impact animals and their capacity to provide ecosystem services and goods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa