Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 320: 115769, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944316

RESUMO

This review aims to assess different technologies for the on-site treatment of hospital wastewater (HWW) to remove pharmaceutical compounds (PhCs) as sustances of emerging concern at a bench, pilot, and full scales from 2014 to 2020. Moreover, a rough characterisation of hospital effluents is presented. The main detected PhCs are antibiotics and psychiatric drugs, with concentrations up to 1.1 mg/L. On the one hand, regarding the presented technologies, membrane bioreactors (MBRs) are a good alternative for treating HWW with PhCs removal values higher than 80% in removing analgesics, anti-inflammatories, cardiovascular drugs, and some antibiotics. Moreover, this system has been scaled up to the pilot plant scale. However, some target compounds are still present in the treated effluent, such as psychiatric and contrast media drugs and recalcitrant antibiotics (erythromycin and sulfamethoxazole). On the other hand, ozonation effectively removes antibiotics found in the HWW (>93%), and some studies are carried out at the pilot plant scale. Even though, some families, such as the X-ray contrast media, are recalcitrant to ozone. Other advanced oxidation processes (AOPs), such as Fenton-like or UV treatments, seem very effective for removing pharmaceuticals, Antibiotic Resistance Bacteria (ARBs) and Antibiotic Resistance Genes (ARGs). However, they are not implanted at pilot plant or full scale as they usually consider extra reactants such as ozone, iron, or UV-light, making the scale-up of the processes a challenging task to treat high-loading wastewater. Thus, several examples of biological wastewater treatment methods combined with AOPs have been proposed as the better strategy to treat HWW with high removal of PhCs (generally over 98%) and ARGs/ARBs (below the detection limit) and lower spending on reactants. However, it still requires further development and optimisation of the integrated processes.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos , Meios de Contraste , Hospitais , Humanos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Water Res ; 42(14): 3719-28, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18657843

RESUMO

The ozonation of an effluent from the secondary clarifier of two Municipal Wastewater Treatment Plants was performed by using alkaline ozone and a combination of ozone and hydrogen peroxide. Alkaline ozonation achieved only a moderate degree of mineralization, essentially concentrated during the first few minutes; but the addition of hydrogen peroxide eventually led to a complete mineralization. The evolution of total organic carbon (TOC) as a measure of the extent of mineralization and the concentration of dissolved ozone were analyzed and linked in a kinetic model whose parameter represented the product of the exposure to hydroxyl radicals and the kinetic constant of indirect ozonation. This rate parameter yielded the highest values during the first part of O(3)/H(2)O(2) runs. The kinetic constant for the decomposition of ozone at the end of the run was also measured and computed for the non-oxidizable water matrix and yielded essentially the same values regardless of whether or not hydrogen peroxide was used. A group of 33 organic compounds, mainly pharmaceuticals and some relevant metabolites present in the wastewater effluents, were evaluated before and after the ozonation process using a liquid chromatography-hybrid triple-quadrupole linear ion trap system (LC-QqLIT-MS). The results demonstrate that the ozonation degrades these compounds with efficiencies of over 99% in most cases, even under low mineralization conditions in alkaline ozonation.


Assuntos
Peróxido de Hidrogênio/química , Ozônio/química , Preparações Farmacêuticas/química , Eliminação de Resíduos Líquidos/métodos , Carbono/química , Cidades , Concentração de Íons de Hidrogênio , Cinética
3.
J Phys Chem B ; 110(1): 240-9, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16471528

RESUMO

The influence of the oxide support (i.e., Al2O3, Nb2O5, SiO2, and TiO2,) on the surface properties, reduction and oxidation properties, acid-base properties, and catalytic activity of supported indium oxide catalysts has been investigated by temperature-programmed reduction/oxidation, thermogravimetry coupled to differential scanning calorimetry, ammonia and sulfur dioxide adsorption calorimetry, and reduction of NOx by ethene in highly oxygen-rich atmosphere. Two series of In2O3-containing catalysts at low (approximately 3 wt %) and at theoretical geometric monolayer (from 20 to 40 wt %) In2O3 content were prepared and their properties were compared with unsupported In2O3 material. Supports able to disperse the In2O3 aggregates with high In stabilization gave rise to active catalytic systems. Among the studied oxide supports, Al2O3 and, to a lower extent, TiO2 were found to be the best supports for obtaining active de-NOx catalysts.

4.
J Hazard Mater ; 181(1-3): 127-32, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20537462

RESUMO

A coupled coagulation-Fenton process was applied for the treatment of cosmetic industry effluents. In a first step, FeSO(4) was used as coagulant and the non-precipitated Fe(2+) remaining in dissolution was used as catalyst in the further Fenton process. In the coagulation process a huge decrease in total organic carbon (TOC) was achieved, but the high concentration of phenol derivatives was not diminished. The decrease in TOC in the coagulation step significantly reduces the amount of H(2)O(2) required in the Fenton process for phenol depletion. The coupled process, using a H(2)O(2) dose of only 2 g l(-1), reduced TOC and total phenol to values lower than 40 and 0.10 mg l(-1), respectively. The short reaction period (less than 15 min) in TOC and phenol degradation bodes well for improving treatment in a continuous regime. The combination of both processes significantly reduced the ecotoxicity of raw effluent and markedly increased its biodegradability, thus allowing easier treatment by the conventional biological units in conventional sewage treatment plants (STPs).


Assuntos
Cosméticos/química , Peróxido de Hidrogênio/química , Resíduos Industriais/prevenção & controle , Ferro/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Ecotoxicologia/métodos , Oxidantes , Fenol/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa