Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(15): E3022-E3031, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348206

RESUMO

Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature.


Assuntos
Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Ensaios de Triagem em Larga Escala/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
2.
Genes Dev ; 23(18): 2134-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19696146

RESUMO

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by overexpressing combinations of factors such as Oct4, Sox2, Klf4, and c-Myc. Reprogramming is slow and stochastic, suggesting the existence of barriers limiting its efficiency. Here we identify senescence as one such barrier. Expression of the four reprogramming factors triggers senescence by up-regulating p53, p16(INK4a), and p21(CIP1). Induction of DNA damage response and chromatin remodeling of the INK4a/ARF locus are two of the mechanisms behind senescence induction. Crucially, ablation of different senescence effectors improves the efficiency of reprogramming, suggesting novel strategies for maximizing the generation of iPS cells.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular , Senescência Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel
3.
Genes Dev ; 23(22): 2625-38, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933152

RESUMO

Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1(-/-) cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1(-/-) cultures have a higher proportion of Nanog(high) cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1(-/-)Satb2(-/-) ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/metabolismo , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog
4.
J Immunol ; 182(10): 6149-59, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19414768

RESUMO

Human intrahepatic lymphocytes are enriched in CD1d-unrestricted T cells coexpressing NKR. Although the origin of this population remains controversial, it is possible to speculate that the hepatic microenvironment, namely epithelial cells or the cytokine milieu, may play a role in its shaping. IL-15 is constitutively expressed in the liver and has a key role in activation and survival of innate and tissue-associated immune cells. In this in vitro study, we examined whether hepatocyte cell lines and/or IL-15 could play a role in the generation of NK-like T cells. The results show that both HepG2 cells and a human immortalized hepatocyte cell line increase survival and drive basal proliferation of T cells. In addition, IL-15 was capable of inducing Ag-independent up-regulation of NKR, including NKG2A, Ig-like receptors, and de novo expression of CD56 and NKp46 in CD8(+)CD56(-) T cells. In conclusion, our study suggests that hepatocytes and IL-15 create a favorable microenvironment for T cells to growth and survive. It can be proposed that the increased percentage of intrahepatic nonclassical NKT cells could be in part due to a local CD8(+) T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Sobrevivência Celular/imunologia , Hepatócitos/imunologia , Interleucina-15/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular/imunologia , Linhagem Celular , Técnicas de Cocultura , Citometria de Fluxo , Hepatócitos/metabolismo , Humanos , Interleucina-15/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo
5.
PLoS Genet ; 4(9): e1000170, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18773085

RESUMO

Differentiated cells can be reprogrammed through the formation of heterokaryons and hybrid cells when fused with embryonic stem (ES) cells. Here, we provide evidence that conversion of human B-lymphocytes towards a multipotent state is initiated much more rapidly than previously thought, occurring in transient heterokaryons before nuclear fusion and cell division. Interestingly, reprogramming of human lymphocytes by mouse ES cells elicits the expression of a human ES-specific gene profile, in which markers of human ES cells are expressed (hSSEA4, hFGF receptors and ligands), but markers that are specific to mouse ES cells are not (e.g., Bmp4 and LIF receptor). Using genetically engineered mouse ES cells, we demonstrate that successful reprogramming of human lymphocytes is independent of Sox2, a factor thought to be required for induced pluripotent stem (iPS) cells. In contrast, there is a distinct requirement for Oct4 in the establishment but not the maintenance of the reprogrammed state. Experimental heterokaryons, therefore, offer a powerful approach to trace the contribution of individual factors to the reprogramming of human somatic cells towards a multipotent state.


Assuntos
Linfócitos B/citologia , Reprogramação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas HMGB/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Fusão Celular , Núcleo Celular/metabolismo , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/metabolismo , Humanos , Células Híbridas/metabolismo , Camundongos , Proteína Homeobox Nanog , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição SOXB1
6.
FEBS J ; 272(1): 152-65, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15634340

RESUMO

Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.


Assuntos
Antígenos CD1/metabolismo , Carcinoma Hepatocelular/metabolismo , Ferro/metabolismo , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo , Antígenos CD1/genética , Sequência de Bases , Morte Celular , Linhagem Celular Tumoral , Primers do DNA , Citometria de Fluxo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Free Radic Biol Med ; 35(11): 1404-16, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14642388

RESUMO

We have recently reported that red blood cells (RBC) promote T cell growth and survival by inhibiting activation-induced T cell death. In the present study, we have examined parameters of oxidative stress and intracellular iron in activated T cells and correlated these data with the expression of ferritin, heme oxygenase-1 (HO-1), and the transferrin receptor CD71. T cells growing in the presence of RBC had reduced levels of reactive oxygen species (ROS) and oxidatively modified proteins, suggesting that RBC efficiently counteracted ROS production on the activated T cells. Flow cytometry and immunodetection demonstrated that T cells dividing in the presence of RBC had increased levels of intracellular ferritin rich in L-subunits and HO-1 along with a downmodulation in CD71 expression. Finally, using the fluorescent iron indicator calcein and flow cytometry analysis, we were able to show that a relative amount of the labile iron pool (LIP) was upregulated in T cells growing in the presence of RBC. These findings are consistent with a typical response to iron overload. However, neither heme compounds nor ferric iron reproduced the levels of expansion and survival of T cells induced by intact RBC. Altogether, these data suggest that RBC inhibit apoptosis of activated T cells by a combination of ROS scavenging and upregulation of cytoprotective proteins such as ferritin and HO-1, which may counteract a possible toxic effect of the increased intracellular free iron.


Assuntos
Eritrócitos/metabolismo , Ferro/metabolismo , Estresse Oxidativo , Linfócitos T/metabolismo , Regulação para Cima , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Western Blotting , Sobrevivência Celular , Células Cultivadas , Ferritinas/química , Ferritinas/metabolismo , Citometria de Fluxo , Radicais Livres , Heme/química , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1 , Humanos , Ferro/química , Proteínas de Membrana , Oxirredução , Testes de Precipitina , Espécies Reativas de Oxigênio , Receptores da Transferrina/metabolismo , Fatores de Tempo
8.
Curr Pharm Des ; 10(2): 191-201, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14754398

RESUMO

T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.


Assuntos
Eritrócitos/fisiologia , Linfócitos T/fisiologia , Animais , Transfusão de Sangue , Antígenos CD4/imunologia , Divisão Celular , Sobrevivência Celular , Humanos , Ferro/toxicidade , Monócitos/fisiologia
9.
Cell Stem Cell ; 11(2): 179-94, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22862944

RESUMO

Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators. Depletion of one such molecule, aurora kinase A (Aurka), resulted in compromised self-renewal and consequent differentiation. By integrating global gene expression and computational analyses, we discovered that loss of Aurka leads to upregulated p53 activity that triggers ESC differentiation. Specifically, Aurka regulates pluripotency through phosphorylation-mediated inhibition of p53-directed ectodermal and mesodermal gene expression. Phosphorylation of p53 not only impairs p53-induced ESC differentiation but also p53-mediated suppression of iPSC reprogramming. Our studies demonstrate an essential role for Aurka-p53 signaling in the regulation of self-renewal, differentiation, and somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Aurora Quinase A , Aurora Quinases , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Células-Tronco Pluripotentes/citologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Xenopus
10.
Philos Trans R Soc Lond B Biol Sci ; 366(1575): 2260-5, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21727131

RESUMO

Reprogramming differentiated cells towards pluripotency can be achieved by different experimental strategies including the forced expression of specific 'inducers' and nuclear transfer. While these offer unparalleled opportunities to generate stem cells and advance disease modelling, the relatively low levels of successful reprogramming achieved (1-2%) makes a direct analysis of the molecular events associated with productive reprogramming very challenging. The generation of transient heterokaryons between human differentiated cells (such as lymphocytes or fibroblasts) and mouse pluripotent stem cell lines results in a much higher frequency of successful conversion (15% SSEA4 expressing cells) and provides an alternative approach to study early events during reprogramming. Under these conditions, differentiated nuclei undergo a series of remodelling events before initiating human pluripotent gene expression and silencing differentiation-associated genes. When combined with genetic or RNAi-based approaches and high-throughput screens, heterokaryon studies can provide important new insights into the factors and mechanisms required to reprogramme unipotent cells towards pluripotency.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Animais , Técnicas Citológicas/métodos , Humanos
11.
Cell Stem Cell ; 6(6): 547-56, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20569692

RESUMO

Embryonic stem cells (ESCs) are pluripotent, self-renewing, and have the ability to reprogram differentiated cell types to pluripotency upon cellular fusion. Polycomb-group (PcG) proteins are important for restraining the inappropriate expression of lineage-specifying factors in ESCs. To investigate whether PcG proteins are required for establishing, rather than maintaining, the pluripotent state, we compared the ability of wild-type, PRC1-, and PRC2-depleted ESCs to reprogram human lymphocytes. We show that ESCs lacking either PRC1 or PRC2 are unable to successfully reprogram B cells toward pluripotency. This defect is a direct consequence of the lack of PcG activity because it could be efficiently rescued by reconstituting PRC2 activity in PRC2-deficient ESCs. Surprisingly, the failure of PRC2-deficient ESCs to reprogram somatic cells is functionally dominant, demonstrating a critical requirement for PcG proteins in the chromatin-remodeling events required for the direct conversion of differentiated cells toward pluripotency.


Assuntos
Linfócitos B/metabolismo , Células-Tronco Embrionárias/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Linfócitos B/patologia , Fusão Celular , Linhagem Celular Transformada , Reprogramação Celular/genética , Células-Tronco Embrionárias/patologia , Técnicas de Inativação de Genes , Histona-Lisina N-Metiltransferase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Telomerase/biossíntese , Telomerase/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
12.
J Immunol ; 180(2): 988-97, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18178839

RESUMO

In T lymphocytes, lipid rafts are preferred sites for signal transduction initiation and amplification. Many cell membrane receptors, such as the TCR, coreceptors, and accessory molecules associate within these microdomains upon cell activation. However, it is still unclear in most cases whether these receptors interact with rafts through lipid-based amino acid modifications or whether raft insertion is driven by protein-protein interactions. In murine T cells, a significant fraction of CD2 associates with membrane lipid rafts. We have addressed the mechanisms that control the localization of rat CD2 at the plasma membrane, and its redistribution within lipid rafts induced upon activation. Following incubation of rat CD2-expressing cells with radioactive-labeled palmitic acid, or using CD2 mutants with Cys226 and Cys228 replaced by alanine residues, we found no evidence that rat CD2 was subjected to lipid modifications that could favor the translocation to lipid rafts, discarding palmitoylation as the principal mechanism for raft addressing. In contrast, using Jurkat cells expressing different CD2 and Lck mutants, we show that the association of CD2 with the rafts fully correlates with CD2 capacity to bind to Lck. As CD2 physically interacts with both Lck and Fyn, preferentially inside lipid rafts, and reflecting the increase of CD2 in lipid rafts following activation, CD2 can mediate the interaction between the two kinases and the consequent boost in kinase activity in lipid rafts.


Assuntos
Antígenos CD2/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Microdomínios da Membrana/metabolismo , Linfócitos T/imunologia , Animais , Antígenos CD2/análise , Antígenos CD2/genética , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/imunologia , Cisteína/química , Cisteína/metabolismo , Humanos , Células Jurkat , Microdomínios da Membrana/química , Microdomínios da Membrana/enzimologia , Camundongos , Ácido Palmítico/metabolismo , Ratos , Ratos Wistar , Linfócitos T/enzimologia , Timoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa