Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 176: 291-303, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592263

RESUMO

The study of the biological activity of trypsin isoforms in aqueous-organic media is of great interest to various fields of knowledge and biochemistry applications. Thus enzymatic, structural, and energetic properties of bovine ß- and α-trypsin isoforms were compared in aqueous-organic media using 30 mg of each isoform. The results showed that the changes induced on the structure and activity of the same trypsin isoform occur at different concentrations. Better results for activity (ionic strength of 0.11 mol·L-1, at 37 °C and pH 8.0) were found in 0-40% of ethanolic media in which the activity for ß-trypsin was about 60% higher than ɑ-trypsin. The ethanolic system does not cause significant changes in the level of secondary structure but the ß-trypsin isoform undergoes a major rearrangement. The use of until 60% (v/v) ethanol showed that ß-trypsin presents a denaturation process 17% more cooperative. The organic solvent causes redistribution in the supramolecular arrangement of both isoforms: all concentrations used induced the ß-trypsin molecules to rearrange into agglomerates. The ɑ-trypsin rearranges into agglomerates up to 60% (v/v) of ethanol and aggregates at 80% (v/v) of ethanol. Both isoforms keep the enzymatic activity up to 60% (v/v) of ethanol.


Assuntos
Agregados Proteicos , Tripsina/química , Animais , Bovinos , Concentração de Íons de Hidrogênio , Isoenzimas , Concentração Osmolar , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
2.
Neuromolecular Med ; 20(1): 73-82, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29332269

RESUMO

The neurotoxin MPTP has long been used to create a mouse model of Parkinson's disease (PD). Indeed, several MPTP analogues have been developed, including 2'-CH3-MPTP, which was shown to induce nigrostriatal DA neuronal depletion more potently than MPTP. However, no study on behavioral and molecular alterations in response to 2'-CH3-MPTP has been carried out so far. In the present work, 2'-CH3-MPTP was administered to mice (2.5, 5.0 and 10 mg/kg per injection, once a day, 5 days) and histological, biochemical, molecular and behavioral alterations were evaluated. We show that, despite a dose-dependent-like pattern observed for nigrostriatal dopaminergic neuronal death and dopamine depletion, dose-specific alterations in dopamine metabolism and in the expression of dopaminergic neurotransmission-associated genes could be related to specific motor deficits elicited by the different doses tested. Interestingly, 2'-CH3-MPTP leads to increased DAT and MAO-B transcription, which could explain, respectively, its higher potency and the requirement of higher doses of MAO inhibitors to prevent nigrostriatal neuronal death when compared to MPTP. Also, perturbations in dopamine metabolism as well as possible alterations in dopamine bioavailability in the synaptic cleft were also identified and correlated with strength and ambulation deficits in response to specific doses. Overall, the present work brings new evidence supporting the distinct effects of 2'-CH3-MPTP when compared to its analogue MPTP. Moreover, our data highlight the utmost importance of a precise experimental design, as different administration regimens and doses yield different biochemical, molecular and behavioral alterations, which can be explored to study specific aspects of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/análogos & derivados , Neurotoxinas , Transtornos Parkinsonianos/induzido quimicamente , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Força da Mão , Ácido Homovanílico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoaminoxidase/biossíntese , Monoaminoxidase/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/psicologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
3.
Int J Biol Macromol ; 101: 408-416, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28344091

RESUMO

The α-trypsin isoform is a globular protein that belongs to serine-protease family and has a polypeptide chain of 223 amino acid residues, six disulfide bridges and two domains with similar structures. The effects of aqueous-organic solvent (ethanol) in different concentration on the α-trypsin structure have been investigated by spectroscopic techniques and thermodynamic data analysis. The results from spectroscopic measurements, including far-UV Circular Dichroism, UV-vis absorption spectroscopy, intrinsic tryptophan fluorescence and dynamic light scattering (DLS) suggest the formation of partially folded states, instead of aggregate states, at high ethanol concentration (>60% v/v ethanol), with little loss of secondary structure, but with significant tertiary structure changes. The thermodynamic data (Tm and ΔH) suggest a loosening of intramolecular weak interactions, which reflects in a flexibility increase such that the catalytic capacity can be increased or decreased according to the ethanol concentration into the system. Overall results we suggest that in range of 0-60% v/v ethanol/buffer, α-trypsin undergoes reversible multimerization phenomena with catalytic activity. However from 60% v/v ethanol/buffer, population of folded partially states with less catalytic activity are predominant.


Assuntos
Etanol/farmacologia , Tripsina/química , Tripsina/metabolismo , Água/química , Animais , Biocatálise , Bovinos , Relação Dose-Resposta a Droga , Estabilidade Enzimática/efeitos dos fármacos , Isoenzimas/química , Isoenzimas/metabolismo , Estrutura Secundária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa