Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731871

RESUMO

D-xylose utilization by yeasts is an essential feature for improving second-generation ethanol production. However, industrial yeast strains are incapable of consuming D-xylose. Previous analyzes of D-xylose-consuming or fermenting yeast species reveal that the genomic features associated with this phenotype are complex and still not fully understood. Here we present a previously neglected yeast enzyme related to D-xylose metabolism, D-xylose dehydrogenase (XylDH), which is found in at least 105 yeast genomes. By analyzing the XylDH gene family, we brought evidence of gene evolution marked by purifying selection on codons and positive selection evidence in D-xylose-consuming and fermenting species, suggesting the importance of XylDH for D-xylose-related phenotypes in yeasts. Furthermore, although we found no putative metabolic pathway for XylDH in yeast genomes, namely the absence of three bacterial known pathways for this enzyme, we also provide its expression profile on D-xylose media following D-xylose reductase for two yeasts with publicly available transcriptomes. Based on these results, we suggest that XylDH plays an important role in D-xylose usage by yeasts, likely being involved in a cofactor regeneration system by reducing cofactor imbalance in the D-xylose reductase pathway.


Assuntos
Aldeído Redutase , Xilose , Xilose/metabolismo , Fermentação , Aldeído Redutase/metabolismo , Leveduras/genética
2.
FEMS Yeast Res ; 21(4)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983370

RESUMO

In this work, we evaluated the fermentative performance and metabolism modifications of a second generation (2G) industrial yeast by comparing an industrial condition during laboratory and industrial scale fermentations. Fermentations were done using industrial lignocellulosic hydrolysate and a synthetic medium containing inhibitors and analyses were carried out through transcriptomics and proteomics of these experimental conditions. We found that fermentation profiles were very similar, but there was an increase in xylose consumption rate during fermentations using synthetic medium when compared to lignocellulosic hydrolysate, likely due to the presence of unknown growth inhibitors contained in the hydrolysate. We also evaluated the bacterial community composition of the industrial fermentation setting and found that the presence of homofermentative and heterofermentative bacteria did not significantly change the performance of yeast fermentation. In parallel, temporal differentially expressed genes (tDEG) showed differences in gene expression profiles between compared conditions, including heat shocks and the presence of up-regulated genes from the TCA cycle during anaerobic xylose fermentation. Thus, we indicate HMF as a possible electron acceptor in this rapid respiratory process performed by yeast, in addition to demonstrating the importance of culture medium for the performance of yeast within industrial fermentation processes, highlighting the uniquenesses according to scales.


Assuntos
Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Bactérias , Meios de Cultura , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial , Lignina/metabolismo , Proteoma , RNA-Seq , Saccharomyces cerevisiae/genética , Transcriptoma
3.
J Biol Chem ; 292(50): 20558-20569, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29042440

RESUMO

Moniliophthora perniciosa is the causative agent of witches' broom disease, which devastates cacao cultures in South America. This pathogenic fungus infects meristematic tissues and derives nutrients from the plant apoplast during an unusually long-lasting biotrophic stage. To survive, the fungus produces proteins to suppress the plant immune response. Proteins of the PR-1 (pathogenesis-related 1)/CAP superfamily have been implicated in fungal virulence and immune suppression. The genome of M. perniciosa encodes 11 homologues of plant PR-1 proteins, designated MpPR-1 proteins, but their precise mode of action is poorly understood. In this study, we expressed MpPR-1 proteins in a yeast model lacking endogenous CAP proteins. We show that some members of the MpPR-1 family bind and promote secretion of sterols, whereas others bind and promote secretion of fatty acids. Lipid binding by purified MpPR-1 occurs with micromolar affinity and is saturable in vitro Sterol binding by MpPR-1 requires the presence of a flexible loop region containing aromatic amino acids, the caveolin-binding motif. Remarkably, MpPR-1 family members that do not bind sterols can be converted to sterol binders by a single point mutation in the caveolin-binding motif. We discuss the possible implications of the lipid-binding activity of MpPR-1 family members with regard to the mode of action of these proteins during M. perniciosa infections.


Assuntos
Agaricales/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Proteínas Fúngicas/metabolismo , Esteróis/metabolismo , Agaricales/química , Agaricales/patogenicidade , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Ligação Competitiva , Cacau/microbiologia , Colesterol/química , Colesterol/metabolismo , Ácidos Graxos não Esterificados/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Cinética , Ligantes , Mutagênese Sítio-Dirigida , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Mutação Puntual , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esteróis/química
4.
Curr Genet ; 61(2): 185-202, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25614078

RESUMO

Transposons are an important source of genetic variation. The phytopathogen Moniliophthora perniciosa shows high level of variability but little is known about the role of class I elements in shaping its genome. In this work, we aimed the characterization of a new gypsy/Ty3 retrotransposon species, named MpSaci, in the M. perniciosa genome. These elements are largely variable in size, ranging from 4 to 15 kb, and harbor direct long terminal repeats (LTRs) with varying degrees of similarity. Approximately, all of the copies are non-autonomous as shifts in the reading frame and stop codons were detected. Only two elements (MpSaci6 and MpSaci9) code for GAG and POL proteins that possess functional domains. Conserved domains that are typically not found in retrotransposons were detected and could potentially impact the expression of neighbor genes. Solo LTRs and several LARDs (large retrotransposon derivative) were detected. Unusual elements containing small sequences with or without interruptions that are similar to gag or different pol domains and presenting LTRs with different levels of similarities were identified. Methylation was observed in MpSaci reverse transcriptase sequences. Distribution analysis indicates that MpSaci elements are present in high copy number in the genomes of C-, S- and L-biotypes of M. perniciosa. In addition, C-biotype isolates originating from the state of Bahia have fragments in common with isolates from the Amazon region and two hybridization profiles related to two chromosomal groups. RT-PCR analysis reveals that the gag gene is constitutively expressed and that the expression is increased at least three-fold with nutrient depravation even though no new insertion were observed. These findings point out that MpSaci collaborated and, even though is primarily represented by non-autonomous elements, still might contribute to the generation of genetic variability in the most important cacao pathogen in Brazil.


Assuntos
Agaricales/genética , Genoma Fúngico , Filogenia , Retroelementos/genética , Agaricales/patogenicidade , Sequência de Aminoácidos , Brasil , Cacau/microbiologia , Humanos , Fases de Leitura Aberta , Alinhamento de Sequência
5.
Microb Cell Fact ; 14: 13, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25633848

RESUMO

BACKGROUND: The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. RESULTS: In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. CONCLUSIONS: Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst.


Assuntos
Bactérias/genética , Etanol/metabolismo , Perfilação da Expressão Gênica , Saccharomyces cerevisiae/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomassa , Brasil , Fermentação , Floculação , Ontologia Genética , Genótipo , Microbiologia Industrial/métodos , Cinética , Interações Microbianas , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo
6.
Proteomics ; 14(7-8): 904-12, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24678036

RESUMO

The main goal of this work is to evaluate some differential protein species in transgenic (T) and nontransgenic (NT) Arabidopsis thaliana plants after their cultivation in the presence or absence of sodium selenite. The transgenic line was obtained through insertion of CaMV 35S controlling nptII gene. Comparative proteomics through 2D-DIGE is carried out in four different groups (NT × T; NT × Se-NT (where Se is selenium); Se-NT × Se-T, and T × Se-T). Although no differential proteins are achieved in the T × Se-T group, for the others, 68 differential proteins (by applying a regulation factor ≥1.5) are achieved, and 27 of them accurately characterized by ESI-MS/MS. These proteins are classified into metabolism, energy, signal transduction, disease/defense categories, and some of them are involved in the glycolysis pathway-Photosystems I and II and ROS combat. Additionally, laser ablation imaging is used for evaluating the Se and sulfur distribution in leaves of different groups, corroborating some results obtained and related to proteins involved in the glycolysis pathway. From these results, it is possible to conclude that the genetic modification also confers to the plant resistance to oxidative stress.


Assuntos
Arabidopsis/genética , Folhas de Planta/genética , Proteômica , Selenito de Sódio/administração & dosagem , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lasers , Imagem Molecular/métodos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
7.
BMC Genomics ; 15: 164, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24571091

RESUMO

BACKGROUND: The basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp. RESULTS: We sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase. CONCLUSIONS: Genome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Cacau/microbiologia , Genoma Fúngico , Genômica , Doenças das Plantas/microbiologia , Composição de Bases , Biologia Computacional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Tamanho do Genoma , Fases de Leitura Aberta , Proteoma , Sintenia
8.
BMC Plant Biol ; 14: 301, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25407319

RESUMO

BACKGROUND: Eucalyptus species are the most widely planted hardwood species in the world and are renowned for their rapid growth and adaptability. In Brazil, one of the most widely grown Eucalyptus cultivars is the fast-growing Eucalyptus urophylla x Eucalyptus grandis hybrid. In a previous study, we described a chemical characterization of these hybrids when subjected to flavonoid supplementation on 2 distinct timetables, and our results revealed marked differences between the wood composition of the treated and untreated trees. RESULTS: In this work, we report the transcriptional responses occurring in these trees that may be related to the observed chemical differences. Gene expression was analysed through mRNA-sequencing, and notably, compared to control trees, the treated trees display differential down-regulation of cell wall formation pathways such as phenylpropanoid metabolism as well as differential expression of genes involved in sucrose, starch and minor CHO metabolism and genes that play a role in several stress and environmental responses. We also performed enzymatic hydrolysis of wood samples from the different treatments, and the results indicated higher sugar contents and glucose yields in the flavonoid-treated plants. CONCLUSIONS: Our results further illustrate the potential use of flavonoids as a nutritional complement for modifying Eucalyptus wood, since, supplementation with flavonoids alters its chemical composition, gene expression and increases saccharification probably as part of a stress response.


Assuntos
Eucalyptus/efeitos dos fármacos , Flavonoides/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Parede Celular/química , Parede Celular/metabolismo , Regulação para Baixo , Eucalyptus/química , Eucalyptus/genética , Eucalyptus/metabolismo , Lignina/química , Lignina/metabolismo , Árvores , Madeira/química , Madeira/efeitos dos fármacos , Madeira/genética , Madeira/metabolismo
9.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38921393

RESUMO

Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a ß-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.

10.
Mol Plant Microbe Interact ; 26(11): 1281-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23902259

RESUMO

Cerato-platanins (CP) are small, cysteine-rich fungal-secreted proteins involved in the various stages of the host-fungus interaction process, acting as phytotoxins, elicitors, and allergens. We identified 12 CP genes (MpCP1 to MpCP12) in the genome of Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, and showed that they present distinct expression profiles throughout fungal development and infection. We determined the X-ray crystal structures of MpCP1, MpCP2, MpCP3, and MpCP5, representative of different branches of a phylogenetic tree and expressed at different stages of the disease. Structure-based biochemistry, in combination with nuclear magnetic resonance and mass spectrometry, allowed us to define specialized capabilities regarding self-assembling and the direct binding to chitin and N-acetylglucosamine (NAG) tetramers, a fungal cell wall building block, and to map a previously unknown binding region in MpCP5. Moreover, fibers of MpCP2 were shown to act as expansin and facilitate basidiospore germination whereas soluble MpCP5 blocked NAG6-induced defense response. The correlation between these roles, the fungus life cycle, and its tug-of-war interaction with cacao plants is discussed.


Assuntos
Agaricales/genética , Cacau/microbiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Acetilglucosamina/metabolismo , Agaricales/efeitos dos fármacos , Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Quitina/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Interações Hospedeiro-Patógeno , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Filogenia , Ligação Proteica , Análise de Sequência de DNA , Análise de Sequência de RNA , Esporos Fúngicos
11.
BMC Genomics ; 14: 91, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23394930

RESUMO

BACKGROUND: The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated "omics" approaches. RESULTS: The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. CONCLUSIONS: The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non-pathogenic fungi, suggesting that its relevance in the lifestyle of these organisms should be based on a small number of specific proteins and/or with respect to differential gene regulation. In this regard, particular interest should be directed towards mitochondrial proteins with unknown function and the novel protein that might be specific to this species. Further functional characterization of these proteins could enhance our understanding of the role of mitochondria in phytopathogenicity.


Assuntos
Ascomicetos/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Ascomicetos/classificação , Ascomicetos/patogenicidade , Cacau/genética , Cacau/microbiologia , Biologia Computacional , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteoma/análise , Proteoma/genética
12.
BMC Genomics ; 13: 562, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23083487

RESUMO

BACKGROUND: Synthetic biology allows the development of new biochemical pathways for the production of chemicals from renewable sources. One major challenge is the identification of suitable microorganisms to hold these pathways with sufficient robustness and high yield. In this work we analyzed the genome of the propionic acid producer Actinobacteria Propionibacterium acidipropionici (ATCC 4875). RESULTS: The assembled P. acidipropionici genome has 3,656,170 base pairs (bp) with 68.8% G + C content and a low-copy plasmid of 6,868 bp. We identified 3,336 protein coding genes, approximately 1000 more than P. freudenreichii and P. acnes, with an increase in the number of genes putatively involved in maintenance of genome integrity, as well as the presence of an invertase and genes putatively involved in carbon catabolite repression. In addition, we made an experimental confirmation of the ability of P. acidipropionici to fix CO2, but no phosphoenolpyruvate carboxylase coding gene was found in the genome. Instead, we identified the pyruvate carboxylase gene and confirmed the presence of the corresponding enzyme in proteome analysis as a potential candidate for this activity. Similarly, the phosphate acetyltransferase and acetate kinase genes, which are considered responsible for acetate formation, were not present in the genome. In P. acidipropionici, a similar function seems to be performed by an ADP forming acetate-CoA ligase gene and its corresponding enzyme was confirmed in the proteome analysis. CONCLUSIONS: Our data shows that P. acidipropionici has several of the desired features that are required to become a platform for the production of chemical commodities: multiple pathways for efficient feedstock utilization, ability to fix CO2, robustness, and efficient production of propionic acid, a potential precursor for valuable 3-carbon compounds.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Microbiologia Industrial , Propionatos/metabolismo , Propionibacterium/genética , Propionibacterium/metabolismo , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Proteínas de Bactérias/metabolismo , Composição de Bases , Sequência de Bases , Dióxido de Carbono/metabolismo , Redes e Vias Metabólicas , Dados de Sequência Molecular , Plasmídeos , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
13.
Genome Res ; 19(12): 2258-70, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19812109

RESUMO

Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.


Assuntos
Biocombustíveis , Etanol/metabolismo , Genoma Fúngico/genética , Microbiologia Industrial , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Brasil , Cromossomos Fúngicos , DNA Fúngico/análise , Diploide , Fermentação , Haploidia , Dados de Sequência Molecular , Fenótipo , Polimorfismo Genético , Proteínas de Saccharomyces cerevisiae , Análise de Sequência de DNA , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia
14.
Fungal Genet Biol ; 49(11): 922-32, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23022488

RESUMO

The hemibiotrophic basidiomycete fungus Moniliophthora perniciosa, the causal agent of Witches' broom disease (WBD) in cacao, is able to grow on methanol as the sole carbon source. In plants, one of the main sources of methanol is the pectin present in the structure of cell walls. Pectin is composed of highly methylesterified chains of galacturonic acid. The hydrolysis between the methyl radicals and galacturonic acid in esterified pectin, mediated by a pectin methylesterase (PME), releases methanol, which may be decomposed by a methanol oxidase (MOX). The analysis of the M. pernciosa genome revealed putative mox and pme genes. Real-time quantitative RT-PCR performed with RNA from mycelia grown in the presence of methanol or pectin as the sole carbon source and with RNA from infected cacao seedlings in different stages of the progression of WBD indicate that the two genes are coregulated, suggesting that the fungus may be metabolizing the methanol released from pectin. Moreover, immunolocalization of homogalacturonan, the main pectic domain that constitutes the primary cell wall matrix, shows a reduction in the level of pectin methyl esterification in infected cacao seedlings. Although MOX has been classically classified as a peroxisomal enzyme, M. perniciosa presents an extracellular methanol oxidase. Its activity was detected in the fungus culture supernatants, and mass spectrometry analysis indicated the presence of this enzyme in the fungus secretome. Because M. pernciosa possesses all genes classically related to methanol metabolism, we propose a peroxisome-independent model for the utilization of methanol by this fungus, which begins with the extracellular oxidation of methanol derived from the demethylation of pectin and finishes in the cytosol.


Assuntos
Agaricales/enzimologia , Oxirredutases do Álcool/metabolismo , Cacau/microbiologia , Espaço Extracelular/enzimologia , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Espaço Extracelular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Metanol/metabolismo , Dados de Sequência Molecular , Pectinas/metabolismo , Transporte Proteico , Alinhamento de Sequência
15.
New Phytol ; 194(4): 1025-1034, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22443281

RESUMO

The tropical pathogen Moniliophthora perniciosa causes witches' broom disease in cacao. As a hemibiotrophic fungus, it initially colonizes the living host tissues (biotrophic phase), and later grows over the dead plant (necrotrophic phase). Little is known about the mechanisms that promote these distinct fungal phases or mediate the transition between them. An alternative oxidase gene (Mp-aox) was identified in the M. perniciosa genome and its expression was analyzed througout the fungal life cycle. In addition, the effects of inhibitors of the cytochrome-dependent respiratory chain (CRC) and alternative oxidase (AOX) were evaluated on the in vitro development of M. perniciosa. Larger numbers of Mp-aox transcripts were observed in the biotrophic hyphae, which accordingly showed elevated sensitivity to AOX inhibitors. More importantly, the inhibition of CRC prevented the transition from the biotrophic to the necrotrophic phase, and the combined use of a CRC and AOX inhibitor completely halted fungal growth. On the basis of these results, a novel mechanism is presented in which AOX plays a role in the biotrophic development of M. perniciosa and regulates the transition to its necrotrophic stage. Strikingly, this model correlates well with the infection strategy of animal pathogens, particularly Trypanosoma brucei, which uses AOX as a strategy for pathogenicity.


Assuntos
Agaricales/enzimologia , Cacau/microbiologia , Interações Hospedeiro-Patógeno , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Expressão Gênica , Metacrilatos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Micélio/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Oxirredutases/genética , Proteínas de Plantas/genética , Pirimidinas , Salicilamidas , Estrobilurinas , Regulação para Cima
16.
An Acad Bras Cienc ; 84(2): 469-86, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22652759

RESUMO

The enzyme chitinase from Moniliophthora perniciosa the causative agent of the witches' broom disease in Theobroma cacao, was partially purified with ammonium sulfate and filtration by Sephacryl S-200 using sodium phosphate as an extraction buffer. Response surface methodology (RSM) was used to determine the optimum pH and temperature conditions. Four different isoenzymes were obtained: ChitMp I, ChitMp II, ChitMp III and ChitMp IV. ChitMp I had an optimum temperature at 44-73ºC and an optimum pH at 7.0-8.4. ChitMp II had an optimum temperature at 45-73ºC and an optimum pH at 7.0-8.4. ChitMp III had an optimum temperature at 54-67ºC and an optimum pH at 7.3-8.8. ChitMp IV had an optimum temperature at 60ºC and an optimum pH at 7.0. For the computational biology, the primary sequence was determined in silico from the database of the Genome/Proteome Project of M. perniciosa, yielding a sequence with 564 bp and 188 amino acids that was used for the three-dimensional design in a comparative modeling methodology. The generated models were submitted to validation using Procheck 3.0 and ANOLEA. The model proposed for the chitinase was subjected to a dynamic analysis over a 1 ns interval, resulting in a model with 91.7% of the residues occupying favorable places on the Ramachandran plot and an RMS of 2.68.


Assuntos
Agaricales/enzimologia , Quitinases/biossíntese , Sequência de Aminoácidos , Quitinases/química , Quitinases/genética , Cromatografia em Gel , Modelos Biológicos , Dados de Sequência Molecular
17.
Bioresour Bioprocess ; 9(1): 97, 2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38647773

RESUMO

An imminent change in the world energy matrix makes it necessary to increase the production of renewable fuels. The United States and Brazil are the world's largest producers, but their production methods are very different, using different raw materials, ground corn and sugarcane juice, respectively. In recent years, strong investments have been made to expand the use of corn in Brazilian ethanol production. The combination of the sugar cane and corn ethanol industries has generated innovations in the sector, such as the "flex" mills, which are traditional sugar cane mills adapted to produce corn ethanol in the sugar cane off-season. Brazil has a portfolio of robust industrial yeasts for sugarcane ethanol production, naturally evolved and selected over the past 50 years. In this work, we analyze for the first time the performance of Brazilian industrial strains (BG-1, CAT-1, PE-2 and SA-1, widely used in sugarcane ethanol production) in corn ethanol production using different stress conditions. Ethanol Red yeast, traditionally used in corn ethanol plants around the world, was used as a control. In terms of tolerance to temperature (35 °C), strains BG-1 and SA-1 stood out. In fermentations with high solids concentration (35%), strain BG-1 reached ethanol contents higher than 19% w/v and had a productivity gain of 5.8% compared to fermentation at 30%. This was the first time that these industrial strains were evaluated using the high solids concentration of 35% and the results point to ways to improve the corn ethanol production process.

18.
Mol Plant Microbe Interact ; 24(7): 839-48, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21405988

RESUMO

Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).


Assuntos
Agaricales/metabolismo , Agaricales/patogenicidade , Carboxiliases/biossíntese , Nicotiana , Ácido Oxálico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carboxiliases/genética , Morte Celular , Flammulina/enzimologia , Flammulina/genética , Formiatos/metabolismo , Necrose , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
19.
BMC Ecol Evol ; 21(1): 84, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990179

RESUMO

BACKGROUND: Plant pathogenesis related-1 (PR-1) proteins belong to the CAP superfamily and have been characterized as markers of induced defense against pathogens. Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that respectively cause the witches' broom disease and frosty pod rot in Theobroma cacao. Interestingly, a large number of plant PR-1-like genes are present in the genomes of both species and many are up-regulated during the biotrophic interaction. In this study, we investigated the evolution of PR-1 proteins from 22 genomes of Moniliophthora isolates and 16 other Agaricales species, performing genomic investigation, phylogenetic reconstruction, positive selection search and gene expression analysis. RESULTS: Phylogenetic analysis revealed conserved PR-1 genes (PR-1a, b, d, j), shared by many Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to pathogenicity in Moniliophthora (PR-1f, g, h, i), as well as in recent specialization cases within M. perniciosa biotypes (PR-1c, k, l) and M. roreri (PR-1n). PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in the biotrophic interaction and positive selection clues, supporting the hypothesis that these proteins accumulated adaptive changes in response to host-pathogen arms race. Furthermore, although previous work showed that MpPR-1 can detoxify plant antifungal compounds in yeast, we found that in the presence of eugenol M. perniciosa differentially expresses only MpPR-1e, k, d, of which two are not linked to pathogenicity, suggesting that detoxification might not be the main function of most MpPR-1. CONCLUSIONS: Based on analyses of genomic and expression data, we provided evidence that the evolution of PR-1 in Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle in this genus. Additionally, we also discuss how fungal PR-1 proteins could have adapted from basal conserved functions to possible roles in fungal pathogenesis.


Assuntos
Agaricales , Doenças das Plantas , Agaricales/genética , Humanos , Estilo de Vida , Filogenia
20.
NAR Genom Bioinform ; 2(1): lqz024, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575571

RESUMO

The advent of high-throughput sequencing technologies made it possible to obtain large volumes of genetic information, quickly and inexpensively. Thus, many efforts are devoted to unveiling the biological roles of genomic elements, being the distinction between protein-coding and long non-coding RNAs one of the most important tasks. We describe RNAsamba, a tool to predict the coding potential of RNA molecules from sequence information using a neural network-based that models both the whole sequence and the ORF to identify patterns that distinguish coding from non-coding transcripts. We evaluated RNAsamba's classification performance using transcripts coming from humans and several other model organisms and show that it recurrently outperforms other state-of-the-art methods. Our results also show that RNAsamba can identify coding signals in partial-length ORFs and UTR sequences, evidencing that its algorithm is not dependent on complete transcript sequences. Furthermore, RNAsamba can also predict small ORFs, traditionally identified with ribosome profiling experiments. We believe that RNAsamba will enable faster and more accurate biological findings from genomic data of species that are being sequenced for the first time. A user-friendly web interface, the documentation containing instructions for local installation and usage, and the source code of RNAsamba can be found at https://rnasamba.lge.ibi.unicamp.br/.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa