Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Br J Haematol ; 204(6): 2287-2300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651345

RESUMO

Despite advancements in utilizing genetic markers to enhance acute myeloid leukaemia (AML) outcome prediction, significant disease heterogeneity persists, hindering clinical management. To refine survival predictions, we assessed the transcriptome of non-acute promyelocytic leukaemia chemotherapy-treated AML patients from five cohorts (n = 975). This led to the identification of a 4-gene prognostic index (4-PI) comprising CYP2E1, DHCR7, IL2RA and SQLE. The 4-PI effectively stratified patients into risk categories, with the high 4-PI group exhibiting TP53 mutations and cholesterol biosynthesis signatures. Single-cell RNA sequencing revealed enrichment for leukaemia stem cell signatures in high 4-PI cells. Validation across three cohorts (n = 671), including one with childhood AML, demonstrated the reproducibility and clinical utility of the 4-PI, even using cost-effective techniques like real-time quantitative polymerase chain reaction. Comparative analysis with 56 established prognostic indexes revealed the superior performance of the 4-PI, highlighting its potential to enhance AML risk stratification. Finally, the 4-PI demonstrated to be potential marker to reclassified patients from the intermediate ELN2017 category to the adverse category. In conclusion, the 4-PI emerges as a robust and straightforward prognostic tool to improve survival prediction in AML patients.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/diagnóstico , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Adulto , Idoso , Transcriptoma , Adolescente , Criança
2.
Blood ; 140(19): 2037-2052, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35984907

RESUMO

Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.


Assuntos
Leucemia Mieloide Aguda , Metionina , Camundongos , Animais , Leucemia Mieloide Aguda/patologia , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/uso terapêutico , Histonas/metabolismo , Racemetionina
3.
Mol Cell Proteomics ; 20: 100091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33971369

RESUMO

Non-T cell activation linker (NTAL) membrane protein depletion from lipid rafts by alkylphospholipids or downregulation by shRNA knockdown decreases cell viability through regulation of the Akt/PI3K pathway in mantle cell lymphoma and acute promyelocytic leukemia cells. Here, we confirmed that the knockdown of NTAL in acute myeloid leukemia (AML) cell lines was associated with decreased cell proliferation and survival. Similarly, a xenograft model using AML cells transduced with NTAL-shRNA and transplanted into immunodeficient mice led to a 1.8-fold decrease in tumor burden. Using immunoprecipitation, LC-MS/MS analysis, and label-free protein quantification, we identified interactors of NTAL in two AML cell lines. By evaluating the gene expression signatures of the NTAL protein interactors using the PREdiction of Clinical Outcomes from Genomic Profiles database, we found that 12 NTAL interactors could predict overall survival in AML, in at least two independent cohorts. In addition, patients with AML exhibiting a high expression of NTAL and its interactors were associated with a leukemic granulocyte-macrophage progenitor-like state. Taken together, our data provide evidence that NTAL and its protein interactors are relevant to AML cell proliferation and survival and represent potential therapeutic targets for granulocyte-macrophage progenitor-like leukemias.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Sobrevida , Transcriptoma
4.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069220

RESUMO

Phosphatidylinositol-5-phosphate 4-kinase type 2 (PIP4K2) protein family members (PIP4K2A, PIP4K2B, and PIP4K2C) participate in the generation of PIP4,5P2, which acts as a secondary messenger in signal transduction, a substrate for metabolic processes, and has structural functions. In patients with acute myeloid leukemia (AML), high PIP4K2A and PIP4K2C levels are independent markers of a worse prognosis. Recently, our research group reported that THZ-P1-2 (PIP4K2 pan-inhibitor) exhibits anti-leukemic activity by disrupting mitochondrial homeostasis and autophagy in AML models. In the present study, we characterized the expression of PIP4K2 in the myeloid compartment of hematopoietic cells, as well as in AML cell lines and clinical samples with different genetic abnormalities. In ex vivo assays, PIP4K2 expression levels were related to sensitivity and resistance to several antileukemia drugs and highlighted the association between high PIP4K2A levels and resistance to venetoclax. The combination of THZ-P1-2 and venetoclax showed potentiating effects in reducing viability and inducing apoptosis in AML cells. A combined treatment differentially modulated multiple genes, including TAp73, BCL2, MCL1, and BCL2A1. In summary, our study identified the correlation between the expression of PIP4K2 and the response to antineoplastic agents in ex vivo assays in AML and exposed vulnerabilities that may be exploited in combined therapies, which could result in better therapeutic responses.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/farmacologia
5.
Invest New Drugs ; 40(3): 576-585, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35015172

RESUMO

BACKGROUND: Myeloproliferative neoplasms (MPN) are disorders characterized by an alteration at the hematopoietic stem cell (HSC) level, where the JAK2 mutation is the most common genetic alteration found in classic MPN (polycythemia vera, essential thrombocythemia, and primary myelofibrosis). We and others previously demonstrated that metformin reduced splenomegaly and platelets counts in peripheral blood in JAK2V617F pre-clinical MPN models, which highlighted the antineoplastic potential of biguanides for MPN treatment. Phenformin is a biguanide that has been used to treat diabetes, but was withdrawn due to its potential to cause lactic acidosis in patients. AIMS: We herein aimed to investigate the effects of phenformin in MPN disease burden and stem cell function in Jak2V617F-knockin MPN mice. RESULTS: In vitro phenformin treatment reduced cell viability and increased apoptosis in SET2 JAK2V67F cells. Long-term treatment with 40 mg/kg phenformin in Jak2V617F knockin mice increased the frequency of LSK, myeloid progenitors (MP), and multipotent progenitors (MPP) in the bone marrow. Phenformin treatment did not affect peripheral blood counts, spleen weight, megakaryocyte count, erythroid precursors frequency, or ex vivo clonogenic capacity. Ex vivo treatment of bone marrow cells from Jak2V617F knockin mice with phenformin did not affect hematologic parameters or engraftment in recipient mice. CONCLUSIONS: Phenformin increased the percentages of LSK, MP, and MPP populations, but did not reduce disease burden in Jak2V617F-knockin mice. Additional studies are necessary to further understand the effects of phenformin on early hematopoietic progenitors.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Animais , Medula Óssea , Modelos Animais de Doenças , Humanos , Janus Quinase 2 , Camundongos , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Fenformin/farmacologia , Fenformin/uso terapêutico , Policitemia Vera/genética
6.
Ann Hematol ; 100(4): 921-931, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33586016

RESUMO

Alpha thalassemia and beta-globin haplotype are considered classical genetic disease modifiers in sickle cell anemia (SCA) causing clinical heterogeneity. Nevertheless, their functional impact on SCA disease emergence and progression remains elusive. To better understand the role of alpha thalassemia and beta-globin haplotype in SCA, we performed a retrospective study evaluating the clinical manifestations of 614 patients. The univariate analysis showed that the presence of alpha-thalassemia -3.7-kb mutation (αα/-α and -α/-α) decreased the risk of stroke development (p = 0.046), priapism (p = 0.033), and cholelithiasis (p = 0.021). Furthermore, the cumulative incidence of stroke (p = 0.023) and cholelithiasis (p = 0.006) was also significantly lower for patients carrying the alpha thalassemia -3.7-kb mutation. No clinical effects were associated with the beta-globin haplotype analysis, which could be explained by the relatively homogeneous haplotype composition in our cohort. Our results reinforce that alpha thalassemia can provide protective functions against hemolysis-related symptoms in SCA. Although, several genetic modifiers can impact the inflammatory state of SCA patients, the alpha thalassemia mutation remains one of the most recurrent genetic aberration and should therefore always be considered first.


Assuntos
Anemia Falciforme/complicações , Talassemia alfa/complicações , Globinas beta/genética , Adolescente , Adulto , Idoso , Anemia Falciforme/sangue , Anemia Falciforme/genética , Arteriopatias Oclusivas/epidemiologia , Arteriopatias Oclusivas/etiologia , Brasil/epidemiologia , Criança , Colelitíase/epidemiologia , Colelitíase/etiologia , Feminino , Hemoglobina Fetal/análise , Seguimentos , Haplótipos/genética , Hemólise , Humanos , Úlcera da Perna/epidemiologia , Úlcera da Perna/etiologia , Masculino , Mutação , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Resultado do Tratamento , Adulto Jovem , Talassemia alfa/sangue , Talassemia alfa/genética
7.
BMC Cancer ; 20(1): 821, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859169

RESUMO

BACKGROUND: Differentiation syndrome (DS) is the main life-threatening adverse event that occurs in acute promyelocytic leukemia (APL) patients treated with all-trans retinoic acid (ATRA). Cytokine imbalances have been reported to play role during the developing of acute promyelocytic leukemia differentiation syndrome (APL-DS). However, the relationship between the plasma cytokine levels and their prognostic value for the prediction of DS developing in patients with APL during the treatment with ATRA and anthracyclines has not been previously reported. METHODS: In this study, we followed an APL cohort (n = 17) over 7 days of ATRA therapy in DS (n = 6) and non-DS groups (n = 11). Interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12p70 and TNF-α were measured in the peripheral blood plasma from 17 patients with APL and 11 healthy adult controls by using the cytometric bead array method. RESULTS: In non-DS patients, IL-8 plasma levels were significantly reduced in the seventh day of ATRA treatment (34.16; 6.99 to 147.11 pg mL- 1 in D0 vs. 10.9; 0 to 26.81 pg mL- 1 in D7; p = 0.02) whereas their levels did not discriminate between DS and non-DS development during the entire induction period (all p > 0.05 in D0, D3, and D7). No significant differences were found in IL-6 levels between groups (p > 0.05 in D0-D7). Other cytokines tested were all undetectable in patients with APL or healthy controls. CONCLUSIONS: We demonstrated that the modulation of IL-8 following ATRA treatment may occur regardless of the development of DS and, therefore, does not appear to be a predictive biomarker to monitor the APL-DS.


Assuntos
Antineoplásicos/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Interleucina-8/sangue , Leucemia Promielocítica Aguda/sangue , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/efeitos adversos , Adulto , Idoso , Antineoplásicos/administração & dosagem , Biomarcadores Tumorais/sangue , Feminino , Humanos , Interleucina-6/sangue , Leucemia Promielocítica Aguda/complicações , Leucemia Promielocítica Aguda/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Síndrome , Resultado do Tratamento , Tretinoína/administração & dosagem , Adulto Jovem
8.
Blood Adv ; 8(1): 56-69, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906522

RESUMO

ABSTRACT: Cysteine is a nonessential amino acid required for protein synthesis, the generation of the antioxidant glutathione, and for synthesizing the nonproteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/CRISPR-associated protein 9-mediated knockout of cystathionine-γ-lyase, the cystathionine-to-cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, although perhaps nutritionally nonessential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels, and cell death was induced predominantly as a consequence of glutathione deprivation. nicotinamide adenine dinucleotide phosphate hydrogen oxidase inhibition strongly rescued viability after cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of glutathione peroxidase 4 (GPX4), which functions in reducing lipid peroxides, was also highly toxic. We therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with auranofin also impaired cell viability, whereby we find that oxidative phosphorylation-driven AML subtypes, in particular, are highly dependent on thioredoxin-mediated protection against ferroptosis. Although inhibition of the cystine-glutamine antiporter by sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either sulfasalazine or antioxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further preclinical testing.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Cisteína/metabolismo , Cisteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Cistationina/farmacologia , Sulfassalazina/farmacologia , Aminoácidos/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Butionina Sulfoximina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico
9.
Eur J Pharmacol ; 977: 176723, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851560

RESUMO

Acute lymphoblastic leukemia (ALL), a complex malignancy, displays varying expression profiles of PIP4K2-related genes in adult patients. While PIP4K2A expression is elevated in ALL bone marrow cells compared to healthy bone marrow cells, PIP4K2B is downregulated, and PIP4K2C remains relatively unchanged. Despite the correlation between increased PIP4K2A expression and increased percentage of peripheral blood blasts, clinical outcomes do not strongly correlate with the expression of these genes. Here we investigated the therapeutic potential of three PIP4K2 inhibitors (THZ-P1-2, a131, and CC260) in ALL cell models. THZ-P1-2 emerges as the most effective inhibitor, inducing cell death and mitochondrial damage while reducing cell viability and metabolism significantly. Comparative analyses highlight the superior efficacy of THZ-P1-2 over a131 and CC260. Notably, THZ-P1-2 uniquely disrupts autophagic flux and inhibits the PI3K/AKT/mTOR pathway, indicating a distinct molecular mechanism. In summary, our findings elucidate the differential expression of PIP4K2-related genes in ALL and underscore the potential role of PIP4K2A in disease pathogenesis. The therapeutic promise of THZ-P1-2 in ALL treatment, along with its distinct effects on cell death mechanisms and signaling pathways, enriches our understanding of PIP4K2's involvement in ALL development and offers targeted therapy prospects.

10.
Blood Cancer J ; 12(11): 151, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36347832

RESUMO

The treatment of acute leukemia is challenging because of the genetic heterogeneity between and within patients. Leukemic stem cells (LSCs) are relatively drug-resistant and frequently relapse. Their plasticity and capacity to adapt to extracellular stress, in which mitochondrial metabolism and autophagy play important roles, further complicates treatment. Genetic models of phosphatidylinositol-5-phosphate 4-kinase type 2 protein (PIP4K2s) inhibition have demonstrated the relevance of these enzymes in mitochondrial homeostasis and autophagic flux. Here, we uncovered the cellular and molecular effects of THZ-P1-2, a pan-inhibitor of PIP4K2s, in acute leukemia cells. THZ-P1-2 reduced cell viability and induced DNA damage, apoptosis, loss of mitochondrial membrane potential, and the accumulation of acidic vesicular organelles. Protein expression analysis revealed that THZ-P1-2 impaired autophagic flux. In addition, THZ-P1-2 induced cell differentiation and showed synergistic effects with venetoclax. In primary leukemia cells, LC-MS/MS-based proteome analysis revealed that sensitivity to THZ-P1-2 is associated with mitochondrial metabolism, cell cycle, cell-of-origin (hematopoietic stem cell and myeloid progenitor), and the TP53 pathway. The minimal effects of THZ-P1-2 observed in healthy CD34+ cells suggest a favorable therapeutic window. Our study provides insights into the pharmacological inhibition of PIP4K2s targeting mitochondrial homeostasis and autophagy, shedding light on a new class of drugs for acute leukemia.


Assuntos
Leucemia Mieloide Aguda , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Autofagia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Apoptose , Homeostase
11.
Sci Rep ; 10(1): 10315, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587277

RESUMO

Non-T cell activation linker (NTAL) is a lipid raft-membrane protein expressed by normal and leukemic cells and involved in cell signaling. In acute promyelocytic leukemia (APL), NTAL depletion from lipid rafts decreases cell viability through regulation of the Akt/PI3K pathway. The role of NTAL in APL cell processes, and its association with clinical outcome, has not, however, been established. Here, we show that reduced levels of NTAL were associated with increased all-trans retinoic acid (ATRA)-induced differentiation, generation of reactive oxygen species, and mitochondrial dysfunction. Additionally, NTAL-knockdown (NTAL-KD) in APL cell lines led to activation of Ras, inhibition of Akt/mTOR pathways, and increased expression of autophagy markers, leading to an increased apoptosis rate following arsenic trioxide treatment. Furthermore, NTAL-KD in NB4 cells decreased the tumor burden in (NOD scid gamma) NSG mice, suggesting its implication in tumor growth. A retrospective analysis of NTAL expression in a cohort of patients treated with ATRA and anthracyclines, revealed that NTAL overexpression was associated with a high leukocyte count (P = 0.007) and was independently associated with shorter overall survival (Hazard Ratio: 3.6; 95% Confidence Interval: 1.17-11.28; P = 0.026). Taken together, our data highlights the importance of NTAL in APL cell survival and response to treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Leucemia Promielocítica Aguda/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Animais , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Intervalo Livre de Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Leucemia Promielocítica Aguda/sangue , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/mortalidade , Contagem de Leucócitos , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , Estudos Retrospectivos , Análise de Sobrevida , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
12.
Cancer Genet ; 233-234: 56-66, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31109595

RESUMO

Phosphoinositide signaling pathway orchestrates primordial molecular and cellular functions in both healthy and pathologic conditions. Phosphatidylinositol-5-phosphate 4-kinase type 2 lipid kinase (PIP4K2) family, which compromises PIP4K2A, PIP4K2B and PIP4K2C, has drawn the attention in human cancers. Particularly in hematological malignancies, PIP4K2A was already described as an essential protein for a malignant phenotype, although the clinical and biological impact of PIP4K2B and PIP4K2C proteins have not being explored in the same extent. In the present study, we investigated the impact on clinical outcomes and gene network of PIP4K2A, PIP4K2B and PIP4K2C mRNA transcripts in acute myeloid leukemia (AML) patients included in The Cancer Genome Atlas (2013) study. Our results indicate that PIP4K2A and PIP4K2C, but not PIP4K2B, mRNA levels were significantly reduced in AML patients assigned to the favorable risk group (p < 0.05) and low levels of PIP4K2A and PIP4K2C positively affect clinical outcomes of AML patients (p < 0.05). Gene set enrichment analyses indicate that the expression of PIP4K2 genes is associated with biological process such as signal transduction, metabolism of RNA and genomic instability related-gene sets. In summary, our study provides additional evidence of the involvement of members of the PIP4K2 family, in particular PIP4K2A and PIP4K2C, in AML.


Assuntos
Predisposição Genética para Doença , Leucemia Mieloide Aguda/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Mensageiro/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa