RESUMO
Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.
Assuntos
Genoma , Mamutes , Pele , Animais , Mamutes/genética , Genoma/genética , Feminino , Elefantes/genética , Cromatina/genética , Fósseis , DNA Antigo/análise , Camundongos , Humanos , Cromossomo X/genéticaRESUMO
We report the first chromosome-length genome assemblies for three species in the mammalian order Pholidota: the white-bellied, Chinese, and Sunda pangolins. Surprisingly, we observe extraordinary karyotypic plasticity within this order and, in female white-bellied pangolins, the largest number of chromosomes reported in a Laurasiatherian mammal: 2n = 114. We perform the first karyotype analysis of an African pangolin and report a Y-autosome fusion in white-bellied pangolins, resulting in 2n = 113 for males. We employ a novel strategy to confirm the fusion and identify the autosome involved by finding the pseudoautosomal region (PAR) in the female genome assembly and analyzing the 3D contact frequency between PAR sequences and the rest of the genome in male and female white-bellied pangolins. Analyses of genetic variability show that white-bellied pangolins have intermediate levels of genome-wide heterozygosity relative to Chinese and Sunda pangolins, consistent with two moderate declines of historical effective population size. Our results reveal a remarkable feature of pangolin genome biology and highlight the need for further studies of these unique and endangered mammals.
Assuntos
Mamíferos , Pangolins , Animais , Masculino , Feminino , Pangolins/genética , Mamíferos/genética , Genoma , Cromossomos/genéticaRESUMO
The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation. In addition, we report the karyotype for this species, which was used to anchor and assign chromosome numbers to the chromosome-length scaffolds. The draft assembly was ~2.5 Gb in length, with 95.6% of it anchored to 19 chromosome-length scaffolds, corresponding to the 2n = 38 chromosomes revealed by the karyotype. The assembly has contig and scaffold N50 values of 148.8 kbp and 145.4 Mbp, respectively, and is up to 96% complete based on BUSCO analyses. Annotation of the assembly, including evidence from RNA-seq data, identified 21,406 protein-coding genes and a repeat content of 37.35%. Phylogenomic analyses indicated that the black-footed ferret diverged from the European polecat/domestic ferret lineage 1.6 million yr ago. This assembly will enable research on the conservation genomics of black-footed ferrets and thereby aid in the further restoration of this endangered species.
Assuntos
Espécies em Perigo de Extinção , Furões , Animais , Masculino , Furões/genética , Cariótipo , Cariotipagem , FertilidadeRESUMO
The role of chromosome rearrangements in driving evolution has been a long-standing question of evolutionary biology. Here we focused on ruminants as a model to assess how rearrangements may have contributed to the evolution of gene regulation. Using reconstructed ancestral karyotypes of Cetartiodactyls, Ruminants, Pecorans, and Bovids, we traced patterns of gross chromosome changes. We found that the lineage leading to the ruminant ancestor after the split from other cetartiodactyls was characterized by mostly intrachromosomal changes, whereas the lineage leading to the pecoran ancestor (including all livestock ruminants) included multiple interchromosomal changes. We observed that the liver cell putative enhancers in the ruminant evolutionary breakpoint regions are highly enriched for DNA sequences under selective constraint acting on lineage-specific transposable elements (TEs) and a set of 25 specific transcription factor (TF) binding motifs associated with recently active TEs. Coupled with gene expression data, we found that genes near ruminant breakpoint regions exhibit more divergent expression profiles among species, particularly in cattle, which is consistent with the phylogenetic origin of these breakpoint regions. This divergence was significantly greater in genes with enhancers that contain at least one of the 25 specific TF binding motifs and located near bovidae-to-cattle lineage breakpoint regions. Taken together, by combining ancestral karyotype reconstructions with analysis of cis regulatory element and gene expression evolution, our work demonstrated that lineage-specific regulatory elements colocalized with gross chromosome rearrangements may have provided valuable functional modifications that helped to shape ruminant evolution.
Assuntos
Pontos de Quebra do Cromossomo , Evolução Molecular , Ruminantes/genética , Sintenia , Animais , Elementos de DNA Transponíveis , Elementos Facilitadores Genéticos , Cariótipo , Ligação Proteica , Seleção Genética , Fatores de Transcrição/metabolismoRESUMO
The family Cervidae is the second most diverse family in the infraorder Pecora and is characterized by a striking variability in the diploid chromosome numbers among species, ranging from 6 to 70. Chromosomal rearrangements in Cervidae have been studied in detail by chromosome painting. There are many comparative cytogenetic data for both subfamilies (Cervinae and Capreolinae) based on homologies with chromosomes of cattle and Chinese muntjac. Previously it was found that interchromosomal rearrangements are the major type of rearrangements occurring in the Cervidae family. Here, we build a detailed chromosome map of a female reindeer (Rangifer tarandus, 2n = 70, Capreolinae) and a female black muntjac (Muntiacus crinifrons, 2n = 8, Cervinae) with dromedary homologies to find out what other types of rearrangements may have underlined the variability of Cervidae karyotypes. To track chromosomal rearrangements and the distribution of nucleolus organizer regions not only during Cervidae but also Pecora evolution, we summarized new data and compared them with chromosomal maps of other already studied species. We discuss changes in the pecoran ancestral karyotype in the light of new painting data. We show that intrachromosomal rearrangements in autosomes of Cervidae are more frequent than previously thought: at least 13 inversions in evolutionary breakpoint regions were detected.
Assuntos
Cervos , Cervo Muntjac , Animais , Bovinos/genética , Feminino , Cervo Muntjac/genética , Cervos/genética , Cariotipagem , Cariótipo , Coloração Cromossômica , Aberrações Cromossômicas , Evolução MolecularRESUMO
Polyploid species represent a challenge for both cytogenetic and genomic studies due to their high chromosome numbers and the morphological similarity between their paralogous chromosomes. This paper describes the use of low-coverage high-throughput sequencing to identify the 14 most abundant tandemly arranged repetitive elements in the paleotetraploid genome of the crucian carp (Carassius carassius, 2n = 100). These repetitive elements were then used for molecular cytogenetic studies of a closely related functionally triploid form of the Prussian carp (Carassius gibelio, 3n = 150 + Bs) and a relatively distant diploid species, the tench (Tinca tinca, 2n = 48). According to their distribution on the chromosomes of the 3 aforementioned species, the repetitive elements here identified can be divided into 5 groups: (1) those specific to a single genomic locus in both Carassius species, despite the recent carp-specific genome duplication; (2) those located in a single genomic locus of T. tinca, but amplified in one or both Carassius species; (3) those massively amplified in the B chromosomes of C. gibelio; (4) those located in a single locus in C. gibelio, but amplified in many blocks in C. carassius; and (5) those located in multiple pericentromeric loci in both Carassius species. Our data indicate that some of the repetitive elements are highly conserved in cyprinoid species and may serve as good cytogenetic and genomic markers for discriminating paralogous chromosomes, while others are evolutionarily recent, and their amplification may be related to the last whole-genome duplication event.
Assuntos
Carpas/genética , DNA/genética , Ploidias , Animais , Citogenética , Diploide , Feminino , Duplicação Gênica , Genoma , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
The Puma lineage within the family Felidae consists of 3 species that last shared a common ancestor around 4.9 million years ago. Whole-genome sequences of 2 species from the lineage were previously reported: the cheetah (Acinonyx jubatus) and the mountain lion (Puma concolor). The present report describes a whole-genome assembly of the remaining species, the jaguarundi (Puma yagouaroundi). We sequenced the genome of a male jaguarundi with 10X Genomics linked reads and assembled the whole-genome sequence. The assembled genome contains a series of scaffolds that reach the length of chromosome arms and is similar in scaffold contiguity to the genome assemblies of cheetah and puma, with a contig N50 = 100.2 kbp and a scaffold N50 = 49.27 Mbp. We assessed the assembled sequence of the jaguarundi genome using BUSCO, aligned reads of the sequenced individual and another published female jaguarundi to the assembled genome, annotated protein-coding genes, repeats, genomic variants and their effects with respect to the protein-coding genes, and analyzed differences of the 2 jaguarundis from the reference mitochondrial genome. The jaguarundi genome assembly and its annotation were compared in quality, variants, and features to the previously reported genome assemblies of puma and cheetah. Computational analyzes used in the study were implemented in transparent and reproducible way to allow their further reuse and modification.
Assuntos
Felidae , Puma , Animais , Feminino , Genoma , Genômica , Masculino , Anotação de Sequência Molecular , Puma/genéticaRESUMO
Сonstitutive heterochromatin areas are revealed by differential staining as C-positive chromosomal regions. These C-positive bands may greatly vary by location, size, and nucleotide composition. CBG-banding is the most commonly used method to detect structural heterochromatin in animals. The difficulty in identification of individual chromosomes represents an unresolved problem of this method as the body of the chromosome is stained uniformly and does not have banding pattern beyond C-bands. Here, we present the method that we called CDAG for sequential heterochromatin staining after differential GTG-banding. The method uses G-banding followed by heat denaturation in the presence of formamide with consecutive fluorochrome staining. The new technique is valid for the concurrent revealing of heterochromatin position due to differential banding of chromosomes and heterochromatin composition (AT-/GC-rich) in animal karyotyping.
Assuntos
Bandeamento Cromossômico/métodos , Heterocromatina/química , Animais , Composição de Bases , Corantes Fluorescentes , Formamidas/farmacologia , Cariotipagem , Desnaturação de Ácido Nucleico , Coloração e RotulagemRESUMO
Cytogenetics has historically played a key role in research on squirrel monkey (genus Saimiri) evolutionary biology. Squirrel monkeys have a diploid number of 2n = 44, but vary in fundamental number (FN). Apparently, differences in FN have phylogenetic implications and are correlated with geographic regions. A number of hypothetical mechanisms were proposed to explain difference in FN: translocations, heterochromatin, or, most commonly, pericentric inversions. Recently, an additional mechanism, centromere repositioning, was discovered, which can alter chromosome morphology and FN. Here, we used chromosome banding, chromosome painting, and BAC-FISH to test these hypotheses. We demonstrate that centromere repositioning on chromosomes 5 and 15 is the mechanism that accounts for differences in FN. Current phylogenomic trees of platyrrhines provide a temporal framework for evolutionary new centromeres (ENC) in Saimiri. The X-chromosome ENC could be up to 15 million years (my) old that on chromosome 5 as recent as 0.3 my. The chromosome 15 ENC is intermediate, as young as 2.24 my. All ENC have abundant satellite DNAs indicating that the maturation process was fairly rapid. Callithrix jacchus was used as an outgroup for the BAC-FISH data analysis. Comparison with scaffolds from the S. boliviensis genome revealed an error in the last marmoset genome release. Future research including at the sequence level will provide better understanding of chromosome evolution in Saimiri and other platyrrhines. Probably other cases of differences in chromosome morphology and FN, both within and between taxa, will be shown to be due to centromere repositioning and not pericentric inversions.
Assuntos
Centrômero/genética , Cariótipo , Saimiri/genética , Animais , Centrômero/fisiologia , Inversão Cromossômica , Coloração Cromossômica , Análise Citogenética , Evolução Molecular , Filogenia , Translocação GenéticaRESUMO
Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies.
Assuntos
Heterocromatina/genética , Cariótipo , Mapeamento Físico do Cromossomo , Baleias/genética , Animais , Camelus/genética , Feminino , Variação Genética/genética , Humanos , Hibridização in Situ Fluorescente , Masculino , Sintenia , Telômero/genética , Baleias/classificação , Baleias Piloto/genéticaRESUMO
This study reports on a unique balanced reciprocal chromosome translocation detected in a phenotypically normal cattle dam and her calf. CBG-, GTG-banding and FISH using bovine whole-chromosome and telomere probes were applied. The analyses showed that the breakpoints were located near to the centromere in chromosome 26 (q11) and exceptionally close to the telomere in chromosome 13 (q24). The whole euchromatin segment of chromosome 26 was translocated onto chromosome 13. The distal end of chromosome 13 was translocated to the subcentromeric region of chromosome 26. We describe this aberration as a balanced reciprocal translocation rcp(13;26) (q24;q11). It appears that this aberration was maternally derived and may have originated de novo in the dam.
Assuntos
Centrômero/genética , Cariotipagem , Translocação Genética/genética , Animais , Bovinos , Bandeamento Cromossômico , Hibridização in Situ FluorescenteRESUMO
Genome analysis of the alpaca (Lama pacos, LPA) has progressed slowly compared to other domestic species. Here, we report the development of the first comprehensive whole-genome integrated cytogenetic map for the alpaca using fluorescence in situ hybridization (FISH) and CHORI-246 BAC library clones. The map is comprised of 230 linearly ordered markers distributed among all 36 alpaca autosomes and the sex chromosomes. For the first time, markers were assigned to LPA14, 21, 22, 28, and 36. Additionally, 86 genes from 15 alpaca chromosomes were mapped in the dromedary camel (Camelus dromedarius, CDR), demonstrating exceptional synteny and linkage conservation between the 2 camelid genomes. Cytogenetic mapping of 191 protein-coding genes improved and refined the known Zoo-FISH homologies between camelids and humans: we discovered new homologous synteny blocks (HSBs) corresponding to HSA1-LPA/CDR11, HSA4-LPA/CDR31 and HSA7-LPA/CDR36, and revised the location of breakpoints for others. Overall, gene mapping was in good agreement with the Zoo-FISH and revealed remarkable evolutionary conservation of gene order within many human-camelid HSBs. Most importantly, 91 FISH-mapped markers effectively integrated the alpaca whole-genome sequence and the radiation hybrid maps with physical chromosomes, thus facilitating the improvement of the sequence assembly and the discovery of genes of biological importance.
Assuntos
Camelídeos Americanos/genética , Análise Citogenética , Genoma , Animais , Mapeamento Cromossômico , Ligação Genética , Humanos , Repetições de Microssatélites/genética , SinteniaRESUMO
BACKGROUND: Pronghorn (Antilocapridae, 2n = 58) and saola (Bovidae, 2n = 50) are members of Pecora, a highly diversified group of even-toed hoofed mammals. Karyotypes of these species were not involved in chromosome painting studies despite their intriguing phylogenetic positions in Pecora. RESULTS: To trace the chromosome evolution during very fast radiation of main families from the common Pecoran ancestor, high-resolution comparative chromosome maps of pronghorn and saola with human (HSA) and dromedary camel (CDR) painting probes were established. The human and dromedary camel painting probes revealed 50 and 64 conserved segments respectively in the pronghorn genome, while 51 and 63 conserved segments respectively in the saola genome. Integrative analysis with published comparative maps showed that inversions in chromosomes homologous to CDR19/35/19 (HSA 10/20/10), CDR12/34/12 (HSA12/22/12/22), CDR10/33/10 (HSA 11) are present in representatives of all five living Pecoran families. The pronghorn karyotype could have formed from a putative 2n = 58 Pecoran ancestral karyotype by one fission and one fusion and that the saola karyotype differs from the presumed 2n = 60 bovid ancestral karyotype (2n = 60) by five fusions. CONCLUSION: The establishment of high-resolution comparative maps for pronghorn and saola has shed some new insights into the putative ancestral karyotype, chromosomal evolution and phylogenic relationships in Pecora. No cytogenetic signature rearrangements were found that could unite the Antilocapridae with Giraffidae or with any other Pecoran families. Our data on the saola support a separate position of Pseudorigyna subtribe rather than its affinity to either Bovina or Bubalina, but the saola phylogenetic position within Bovidae remains unresolved.
Assuntos
Mapeamento Cromossômico , Coloração Cromossômica , Sondas de DNA , Cariótipo , Ruminantes/genética , Animais , Camelus , Evolução Molecular , Humanos , Masculino , FilogeniaRESUMO
Five families are traditionally recognized within higher ruminants (Pecora): Bovidae, Moschidae, Cervidae, Giraffidae and Antilocapridae. The phylogenetic relationships of Antilocapridae and Giraffidae within Pecora are, however, uncertain. While numerous fusions (mostly Robertsonian) have accumulated in the giraffe's karyotype (Giraffa camelopardalis, Giraffidae, 2n = 30), that of the pronghorn (Antilocapra americana, Antilocapridae, 2n = 58) is very similar to the hypothesised pecoran ancestral state (2n = 58). We examined the chromosomal rearrangements of two species, the giraffe and pronghorn, using a combination of fluorescence in situ hybridization painting probes and BAC clones derived from cattle (Bos taurus, Bovidae). Our data place Moschus (Moschidae) closer to Bovidae than Cervidae. Although the alternative (i.e., Moschidae + Cervidae as sister groups) could not be discounted in recent sequence-based analyses, cytogenetics bolsters conclusions that the former is more likely. Additionally, DNA sequences were isolated from the centromeric regions of both species and compared. Analysis of cenDNA show that unlike the pronghorn, the centromeres of the giraffe are probably organized in a more complex fashion comprising different repetitive sequences specific to single chromosomal pairs or groups of chromosomes. The distribution of nucleolar organiser region (NOR) sites, often an effective phylogenetic marker, were also examined in the two species. In the giraffe, the position of NORs seems to be autapomorphic since similar localizations have not been found in other species within Pecora.
Assuntos
Ruminantes/genética , Animais , Bovinos , Centrômero/genética , Bandeamento Cromossômico , Coloração Cromossômica , Cromossomos de Mamíferos , Hibridização in Situ Fluorescente , Cariótipo , Região Organizadora do Nucléolo , Filogenia , Sequências Repetitivas de Ácido Nucleico , Ruminantes/classificação , Translocação Genética , Cromossomo XRESUMO
Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human-camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly.
Assuntos
Camelídeos Americanos/genética , Mapeamento Cromossômico/métodos , Marcadores Genéticos , Cariotipagem/métodos , Animais , Cromossomos Artificiais Bacterianos , Hibridização Genômica Comparativa , Feminino , Hibridização in Situ Fluorescente , Masculino , Cromossomos Sexuais/genéticaRESUMO
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.
Assuntos
Filogenia , Primatas/classificação , Primatas/genética , Animais , Biologia Computacional , Feminino , Variação Genética , Genoma/genética , MasculinoRESUMO
BACKGROUND: Most eukaryotic species represent stable karyotypes with a particular diploid number. B chromosomes are additional to standard karyotypes and may vary in size, number and morphology even between cells of the same individual. For many years it was generally believed that B chromosomes found in some plant, animal and fungi species lacked active genes. Recently, molecular cytogenetic studies showed the presence of additional copies of protein-coding genes on B chromosomes. However, the transcriptional activity of these genes remained elusive. We studied karyotypes of the Siberian roe deer (Capreolus pygargus) that possess up to 14 B chromosomes to investigate the presence and expression of genes on supernumerary chromosomes. RESULTS: Here, we describe a 2 Mbp region homologous to cattle chromosome 3 and containing TNNI3K (partial), FPGT, LRRIQ3 and a large gene-sparse segment on B chromosomes of the Siberian roe deer. The presence of the copy of the autosomal region was demonstrated by B-specific cDNA analysis, PCR assisted mapping, cattle bacterial artificial chromosome (BAC) clone localization and quantitative polymerase chain reaction (qPCR). By comparative analysis of B-specific and non-B chromosomal sequences we discovered some B chromosome-specific mutations in protein-coding genes, which further enabled the detection of a FPGT-TNNI3K transcript expressed from duplicated genes located on B chromosomes in roe deer fibroblasts. CONCLUSIONS: Discovery of a large autosomal segment in all B chromosomes of the Siberian roe deer further corroborates the view of an autosomal origin for these elements. Detection of a B-derived transcript in fibroblasts implies that the protein coding sequences located on Bs are not fully inactivated. The origin, evolution and effect on host of B chromosomal genes seem to be similar to autosomal segmental duplications, which reinforces the view that supernumerary chromosomal elements might play an important role in genome evolution.
Assuntos
Cromossomos de Mamíferos/genética , Cervos/genética , Fases de Leitura Aberta/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Variações do Número de Cópias de DNA/genética , Feminino , Dosagem de Genes/genética , Biblioteca Gênica , Hibridização in Situ Fluorescente , Masculino , Dados de Sequência Molecular , Nucleotidiltransferases/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sibéria , Especificidade da EspécieRESUMO
Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.
Assuntos
Carnívoros , Mustelidae , Animais , Mustelidae/genética , Heterocromatina , Hibridização in Situ Fluorescente , Eucromatina , Carnívoros/genética , Estruturas CromossômicasRESUMO
In recent years, the number of mole species with species status confirmed by genetic methods has been continuously increasing. Unfortunately, cytogenetic data are not yet available for all species. Here, for the first time, a GTG-banded karyotype of the small-toothed mole from Vietnam, Euroscaptor parvidens, a representative of the Eastern clade of the genus Euroscaptor, has been described. Through comparative analysis of available Euroscaptor (Euroscaptor parvidens, Euroscaptor klossi, and Euroscaptor malayana) and Oreoscaptor (Oreoscaptor mizura) karyotypes, we found cytogenetic signatures for each of the studied species. Zoo-FISH with sorted chromosomes of the Siberian mole (Talpa altaica) on chromosome sets of the small-toothed mole (E. parvidens), the small Japanese mole (Mogera imaizumii) from the closely related genus, and the Japanese shrew mole (Urotrichus talpoides) from the tribe Urotrichini made it possible to identify syntenic regions between these species. We propose a possible ancestral karyotype of the tribe and, based on it, traced the features of chromosomal rearrangements accompanying the divergence of moles. The low rates of chromosomal evolution within the species of the genus Talpa-T. altaica and T. europaea-and the high rates of karyotypic reshuffling within the Asian genera of the tribe were confirmed. The karyotype of the Japanese mountain mole O. mizura seems to be the most conserved among the Asian moles. The most frequently occurring types of chromosomal rearrangements in moles are the pericentric inversions and amplification of heterochromatin. The pericentric inversions on four pairs of autosomes are shared between the closely related genera Euroscaptor, Oreoscaptor, and Mogera, while many more apomorphic rearrangements have occurred in each lineage additionally. The highest rate of chromosomal changes, with five rearrangements occurring over approximately 7 million years, was recorded in the lineage of the small-toothed mole.
Assuntos
Toupeiras , Animais , Toupeiras/genética , Cariotipagem , Citogenética , Cariótipo , Musaranhos/genéticaRESUMO
The family Cervidae is the second most diverse in the infraorder Pecora and is characterized by variability in the diploid chromosome numbers among species. X chromosomes in Cervidae evolved through complex chromosomal rearrangements of conserved segments within the chromosome, changes in centromere position, heterochromatic variation, and X-autosomal translocations. The family Cervidae consists of two subfamilies: Cervinae and Capreolinae. Here we build a detailed X chromosome map with 29 cattle bacterial artificial chromosomes of representatives of both subfamilies: reindeer (Rangifer tarandus), gray brocket deer (Mazama gouazoubira), Chinese water deer (Hydropotes inermis) (Capreolinae); black muntjac (Muntiacus crinifrons), tufted deer (Elaphodus cephalophus), sika deer (Cervus nippon) and red deer (Cervus elaphus) (Cervinae). To track chromosomal rearrangements during Cervidae evolution, we summarized new data, and compared them with available X chromosomal maps and chromosome level assemblies of other species. We demonstrate the types of rearrangements that may have underlined the variability of Cervidae X chromosomes. We detected two types of cervine X chromosome-acrocentric and submetacentric. The acrocentric type is found in three independent deer lineages (subfamily Cervinae and in two Capreolinae tribes-Odocoileini and Capreolini). We show that chromosomal rearrangements on the X-chromosome in Cervidae occur at a higher frequency than in the entire Ruminantia lineage: the rate of rearrangements is 2 per 10 million years.