RESUMO
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) is a powerful tool for investigating cell abundance changes during tissue regeneration and remodeling processes. Differential cell abundance supports the initial clustering of all cells; then, the number of cells per cluster and sample are evaluated, and the dependence of these counts concerning the phenotypic covariates of the samples is studied. Analysis heavily depends on the clustering method. Partitioning Around Medoids (PAM or k-medoids) represents a well-established clustering procedure that leverages the downstream interpretation of clusters by pinpointing real individuals in the dataset as cluster centers (medoids) without reducing dimensions. Of note, PAM suffers from high computational costs and memory requirements. RESULTS: This paper proposes a method for differential abundance analysis using PAM as a clustering method and negative binomial regression as a statistical model to relate covariates to cluster/cell counts. We used this approach to study the differential cell abundance of human endometrial cell types throughout the natural secretory phase of the menstrual cycle. We developed a new R package -scellpam-, that incorporates an efficient parallel C++ implementation of PAM, and applied this package in this study. We compared the PAM-BS clustering method with other methods and evaluated both the computational aspects of its implementation and the quality of the classifications obtained using distinct published datasets with known subpopulations that demonstrate promising results. CONCLUSIONS: The implementation of PAM-BS, included in the scellpam package, exhibits robust performance in terms of speed and memory usage compared to other related methods. PAM allowed quick and robust clustering of sets of cells with a size ranging from 70,000 to 300,000 cells. https://cran.r-project.org/web/packages/scellpam/index.html . Finally, our approach provides important new insights into the transient subpopulations associated with the fertile time frame when applied to the study of changes in the human endometrium during the secretory phase of the menstrual cycle.
Assuntos
Endométrio , Análise de Célula Única , Feminino , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise por Conglomerados , Perfilação da Expressão Gênica/métodosRESUMO
Chronic alcohol abuse causes an inflammatory response in the intestinal tract with damage to the integrity of the mucosa and epithelium, as well as dysbiosis in the gut microbiome. However, the role of gut bacteria in ethanol effects and how these microorganisms interact with the immune system are not well understood. The aim of the present study was to evaluate if TLR4 alters the ethanol-induced intestinal inflammatory response, and whether the response of this receptor affects the gut microbiota profile. We analyzed the 16S rRNA sequence of the fecal samples from wild-type (WT) and TLR4-knockout (TLR4-KO) mice with and without ethanol intake for 3 months. The results demonstrated that chronic ethanol consumption reduces microbiota diversity and causes dysbiosis in WT mice. Likewise, ethanol upregulates several inflammatory genes (IL-1ß, iNOS, TNF-α) and miRNAs (miR-155-5p, miR-146a-5p) and alters structural and permeability genes (INTL1, CDH1, CFTR) in the colon of WT mice. Our results further demonstrated that TLR4-KO mice exhibit a different microbiota that can protect against the ethanol-induced activation of the immune system and colon integrity dysfunctions. In short, our results reveal that TLR4 is a key factor for determining the gut microbiota, which can participate in dysbiosis and the inflammatory response induced by alcohol consumption.
Assuntos
Alcoolismo/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/imunologia , Receptor 4 Toll-Like/deficiência , Alcoolismo/imunologia , Alcoolismo/metabolismo , Animais , Depressores do Sistema Nervoso Central/toxicidade , Modelos Animais de Doenças , Disbiose/imunologia , Disbiose/metabolismo , Disbiose/microbiologia , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 4 Toll-Like/metabolismoRESUMO
Age-associated myometrial dysfunction can prompt complications during pregnancy and labor, which is one of the factors contributing to the 7.8-fold increase in maternal mortality in women over 40. Using single-cell/single-nucleus RNA sequencing and spatial transcriptomics, we have constructed a cellular atlas of the aging myometrium from 186,120 cells across twenty perimenopausal and postmenopausal women. We identify 23 myometrial cell subpopulations, including contractile and venous capillary cells as well as immune-modulated fibroblasts. Myometrial aging leads to fewer contractile capillary cells, a reduced level of ion channel expression in smooth muscle cells, and impaired gene expression in endothelial, smooth muscle, fibroblast, perivascular, and immune cells. We observe altered myometrial cell-to-cell communication as an aging hallmark, which associated with the loss of 25 signaling pathways, including those related to angiogenesis, tissue repair, contractility, immunity, and nervous system regulation. These insights may contribute to a better understanding of the complications faced by older individuals during pregnancy and labor.
Assuntos
Trabalho de Parto , Miométrio , Gravidez , Humanos , Feminino , Miométrio/metabolismo , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , Músculo Liso , Envelhecimento/genética , Contração MuscularRESUMO
Asherman's Syndrome is characterized by intrauterine adhesions or scarring, which cause infertility, menstrual abnormalities, and recurrent pregnancy loss. The pathophysiology of this syndrome remains unknown, with treatment restricted to recurrent surgical removal of intrauterine scarring, which has limited success. Here, we decode the Asherman's Syndrome endometrial cell niche by analyzing data from over 200,000 cells with single-cell RNA-sequencing in patients with this condition and through in vitro analyses of Asherman's Syndrome patient-derived endometrial organoids. Our endometrial atlas highlights the loss of the endometrial epithelium, alterations to epithelial differentiation signaling pathways such as Wnt and Notch, and the appearance of characteristic epithelium expressing secretory leukocyte protease inhibitor during the window of implantation. We describe syndrome-associated alterations in cell-to-cell communication and gene expression profiles that support a dysfunctional pro-fibrotic, pro-inflammatory, and anti-angiogenic environment.
Assuntos
Ginatresia , Doenças Uterinas , Feminino , Gravidez , Humanos , Cicatriz , Comunicação Celular , Implantação do EmbriãoRESUMO
Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.
RESUMO
BACKGROUND: Medical texts such as radiology reports or electronic health records are a powerful source of data for researchers. Anonymization methods must be developed to de-identify documents containing personal information from both patients and medical staff. Although currently there are several anonymization strategies for the English language, they are also language-dependent. Here, we introduce a named entity recognition strategy for Spanish medical texts, translatable to other languages. RESULTS: We tested 4 neural networks on our radiology reports dataset, achieving a recall of 97.18% of the identifying entities. Alongside, we developed a randomization algorithm to substitute the detected entities with new ones from the same category, making it virtually impossible to differentiate real data from synthetic data. The three best architectures were tested with the MEDDOCAN challenge dataset of electronic health records as an external test, achieving a recall of 69.18%. CONCLUSIONS: The strategy proposed, combining named entity recognition tasks with randomization of entities, is suitable for Spanish radiology reports. It does not require a big training corpus, thus it could be easily extended to other languages and medical texts, such as electronic health records.
Assuntos
Idioma , Radiologia , Registros Eletrônicos de Saúde , Humanos , Processamento de Linguagem Natural , Redes Neurais de ComputaçãoRESUMO
Since its emergence in March 2020, the SARS-CoV-2 global pandemic has produced more than 116 million cases and 2.5 million deaths worldwide. Despite the enormous efforts carried out by the scientific community, no effective treatments have been developed to date. We applied a novel computational pipeline aimed to accelerate the process of identifying drug repurposing candidates which allows us to compare three-dimensional protein structures. Its use in conjunction with two in silico validation strategies (molecular docking and transcriptomic analyses) allowed us to identify a set of potential drug repurposing candidates targeting three viral proteins (3CL viral protease, NSP15 endoribonuclease, and NSP12 RNA-dependent RNA polymerase), which included rutin, dexamethasone, and vemurafenib. This is the first time that a topological data analysis (TDA)-based strategy has been used to compare a massive number of protein structures with the final objective of performing drug repurposing to treat SARS-CoV-2 infection.
RESUMO
TLR4 is a member of the toll-like receptors (TLR) immune family, which are activated by lipopolysaccharide, ethanol or damaged tissue, among others, by triggering proinflammatory cytokines release and inflammation. Lack of TLR4 protects against inflammatory processes and neuroinflammation linked with several neuropathologies. By considering that miRNAs are key post-transcriptional regulators of the proteins involved in distinct cellular processes, including inflammation, this study aimed to assess the impact of the miRNAs profile in mice cortices lacking the TLR4 response. Using mice cerebral cortices and next-generation sequencing (NGS), the findings showed that lack of TLR4 significantly reduced the quantity and diversity of the miRNAs expressed in WT mice cortices. The results also revealed a significant down-regulation of the miR-200 family, while cluster miR-99b/let-7e/miR-125a was up-regulated in TLR4-KO vs. WT. The bioinformatics and functional analyses demonstrated that TLR4-KO presented the systematic depletion of many pathways closely related to the immune system response, such as cytokine and interleukin signaling, MAPK and ion Channels routes, MyD88 pathways, NF-κß and TLR7/8 pathways. Our results provide new insights into the molecular and biological processes associated with the protective effects of TLR-KO against inflammatory damage and neuroinflammation, and reveal the relevance of the TLR4 receptors response in many neuropathologies.