Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Ther ; 31(5): 1275-1292, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37025062

RESUMO

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominantly inherited ataxia worldwide. It is caused by an over-repetition of the trinucleotide CAG within the ATXN3 gene, which confers toxic properties to ataxin-3 (ATXN3) species. RNA interference technology has shown promising therapeutic outcomes but still lacks a non-invasive delivery method to the brain. Extracellular vesicles (EVs) emerged as promising delivery vehicles due to their capacity to deliver small nucleic acids, such as microRNAs (miRNAs). miRNAs were found to be enriched into EVs due to specific signal motifs designated as ExoMotifs. In this study, we aimed at investigating whether ExoMotifs would promote the packaging of artificial miRNAs into EVs to be used as non-invasive therapeutic delivery vehicles to treat MJD/SCA3. We found that miRNA-based silencing sequences, associated with ExoMotif GGAG and ribonucleoprotein A2B1 (hnRNPA2B1), retained the capacity to silence mutant ATXN3 (mutATXN3) and were 3-fold enriched into EVs. Bioengineered EVs containing the neuronal targeting peptide RVG on the surface significantly decreased mutATXN3 mRNA in primary cerebellar neurons from MJD YAC 84.2 and in a novel dual-luciferase MJD mouse model upon daily intranasal administration. Altogether, these findings indicate that bioengineered EVs carrying miRNA-based silencing sequences are a promising delivery vehicle for brain therapy.


Assuntos
Doença de Machado-Joseph , MicroRNAs , Camundongos , Animais , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , MicroRNAs/genética , Ataxina-3/genética , Interferência de RNA , Peptídeos/genética
2.
Adv Exp Med Biol ; 1049: 439-466, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29427116

RESUMO

Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders. This regenerative potential has been demonstrated in exciting pre and clinical assays. However, despite these promising results, several drawbacks are hampering their successful clinical implementation. Problems related to ethical issues, quality control of the cells used and the lack of reliable models for the efficacy assessment of human stem cells. In this chapter the main advantages and disadvantages of the available sources of stem cells as well as their efficacy and potential to improve disease outcomes are discussed.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso/terapia , Transplante de Células-Tronco/métodos , Células-Tronco , Animais , Encéfalo/fisiologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Regeneração
3.
Neurochem Res ; 42(5): 1430-1437, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28236214

RESUMO

Neurodegenerative diseases are considered to be distinct clinical entities, although they share the formation of proteinaceous aggregates and several neuropathological mechanisms. Increasing evidence suggest a possible interaction between proteins that have been classically associated to distinct neurodegenerative diseases. Thus, common molecular and cellular pathways might explain similarities between disease phenotypes. Interestingly, the characteristic Parkinson's disease (PD) phenotype linked to bradykinesia is also a clinical presentation of other neurodegenerative diseases. An example is Machado-Joseph disease (MJD), with some patients presenting parkinsonism and a positive response to levodopa (L-DOPA). Protein aggregates positive for α-synuclein (α-Syn), a protein associated with PD, in the substantia nigra of MJD models made us hypothesize a putative additive biological effect induced by expression of α-Syn and ataxin-3 (Atx3), the protein affected in MJD. Hence, in this study we analysed the influence of these two proteins (α-Syn and wild-type or mutant Atx3) on modified redox signaling, a pathological process potentially linked to both diseases, and also the impact of exposure to iron and rotenone in SH-SY5Y neuroblastoma cells. Our results show that both α-Syn and mutant Atx3 overexpression per se increased oxidation of dichlorodihydrofluorescein (DCFH2), and co-expression of these proteins exhibited additive effect on intracellular oxidation, with no correlation with apoptotic features. Mutant Atx3 and α-Syn also potentiated altered redox status induced by iron and rotenone, a hint to how these proteins might influence neuronal dysfunction under pro-oxidant conditions. We further show that overexpression of wild-type Atx3 decreased intracellular DCFH2 oxidation, possibly exerting a neuroprotective role.


Assuntos
Ataxina-3/biossíntese , Estresse Oxidativo/fisiologia , Proteínas Repressoras/biossíntese , alfa-Sinucleína/biossíntese , Ataxina-3/genética , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Oxirredução , Proteínas Repressoras/genética , alfa-Sinucleína/genética
4.
Arch Toxicol ; 91(3): 1245-1259, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27424009

RESUMO

Alpha-synuclein (α-syn) is a major component of Lewy bodies found in sporadic and inherited forms of Parkinson's disease (PD). Mutations in the gene encoding α-syn and duplications and triplications of wild-type (WT) α-syn have been associated with PD. Several mechanisms have been implicated in the degeneration of dopaminergic neurons in PD, including oxidative stress and mitochondrial dysfunction. Here we defined the occurrence of oxidative stress in SH-SY5Y cells overexpressing WT α-syn in a doxycycline (Dox) regulated manner, before and after exposure to iron (500 µM), and determined the changes in proteins involved in the intracellular antioxidant defense system. Data evidenced an increase in caspase-3 activation and diminished reducing capacity of -Dox cells, associated with decreased activity of mitochondria complex I and reduced mitochondrial transcription factor A (TFAM) levels in these cells. Furthermore, total and mitochondrial reactive oxygen species levels were higher under basal conditions in cells overexpressing α-syn (-Dox) and this increase was apparently correlated with diminished levels and activities of SOD1 and SOD2 in -Dox cells. Moreover, both reduced and oxidized glutathione levels were diminished in -Dox cells under basal conditions, concomitantly with decreased activity of GCL and reduced protein levels of GCLc. The effects caused by iron (500 µM) were mostly independent of α-syn expression and triggered different antioxidant responses to possibly counterbalance higher levels of free radicals. Overall, data suggest that overexpression of α-syn modifies the antioxidant capacity of SH-SY5Y cells due to altered activity and protein levels of SOD1 and SOD2, and decreased glutathione pool.


Assuntos
Glutationa/biossíntese , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Humanos , Ferro/farmacologia , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo , Frações Subcelulares , alfa-Sinucleína/genética
5.
Mol Cell Neurosci ; 62: 51-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25109238

RESUMO

Alpha-synuclein (α-syn) is a soluble protein highly enriched in presynaptic terminals of neurons. Accumulation of α-syn as intracellular filamentous aggregates is a pathological feature of sporadic and familial forms of Parkinson's disease (PD). Changes in α-syn post-translational modifications, as well as mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Here we assessed the correlation between α-syn phosphorylation at serine 129 (Ser129), the formation of reactive oxygen species (ROS) and mitochondrial dysfunction in SH-SY5Y cells expressing A53T mutant or wild-type (WT) α-syn, exposed to ferrous iron (FeSO4) and rotenone (complex I inhibitor). Under basal conditions, prolonged expression of A53T mutant α-syn altered mitochondria morphology, increased superoxide formation and phosphorylation at Ser129, which was linked to decreased activity of protein phosphatase 2A (PP2A). Exposure to FeSO4 or rotenone enhanced intracellular ROS levels, including superoxide anions, in both types of cells, along with α-syn Ser129 phosphorylation and mitochondrial depolarization. Most of these changes were largely evident in A53T mutant α-syn expressing cells. Overall, the data suggest that stimuli that promote ROS formation and mitochondrial alterations highly correlate with mutant α-syn phosphorylation at Ser129, which may precede cell degeneration in PD.


Assuntos
Mitocôndrias/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo , Fosforilação
6.
Cell Rep ; 37(3): 109864, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686322

RESUMO

Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.


Assuntos
Encéfalo/enzimologia , Fator I de Transcrição COUP/metabolismo , Neurônios Dopaminérgicos/enzimologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Células-Tronco Neurais/enzimologia , Neurogênese , Doença de Parkinson/enzimologia , Animais , Encéfalo/patologia , Fator I de Transcrição COUP/genética , Ciclo Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Mutação , Células-Tronco Neurais/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fenótipo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Fatores de Tempo
7.
Stem Cell Reports ; 12(5): 878-889, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30982740

RESUMO

Emerging evidence suggests that Parkinson's disease (PD), besides being an age-associated disorder, might also have a neurodevelopment component. Disruption of mitochondrial homeostasis has been highlighted as a crucial cofactor in its etiology. Here, we show that PD patient-specific human neuroepithelial stem cells (NESCs), carrying the LRRK2-G2019S mutation, recapitulate key mitochondrial defects previously described only in differentiated dopaminergic neurons. By combining high-content imaging approaches, 3D image analysis, and functional mitochondrial readouts we show that LRRK2-G2019S mutation causes aberrations in mitochondrial morphology and functionality compared with isogenic controls. LRRK2-G2019S NESCs display an increased number of mitochondria compared with isogenic control lines. However, these mitochondria are more fragmented and exhibit decreased membrane potential. Functional alterations in LRRK2-G2019S cultures are also accompanied by a reduced mitophagic clearance via lysosomes. These findings support the hypothesis that preceding mitochondrial developmental defects contribute to the manifestation of the PD pathology later in life.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mitocôndrias/genética , Mutação , Células-Tronco Neurais/metabolismo , Doença de Parkinson/genética , Idoso de 80 Anos ou mais , Diferenciação Celular/genética , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
8.
Free Radic Res ; 41(4): 444-51, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17454126

RESUMO

Oligodendrocytes have the highest rate of metabolic activity in the brain and are highly vulnerable to oxidative stress. In this work we determined the protective effect of Trolox, a water-soluble analogue of vitamin E, and insulin, a peptide shown to be neuroprotective, in oligodendrocyte lesion induced by hydrogen peroxide (H(2)O(2)). Exposure of primary cultures of rat oligodendrocytes to H(2)O(2) dose-dependently decreased their reducing capacity, as determined by the MTT assay. H(2)O(2) (100 muM) had no effect on Bax levels, active-caspase-3, DNA fragmentation or lactate dehydrogenase (LDH) leakage. Nevertheless, under these conditions, H(2)O(2) decreased the levels of myelin basic protein (MBP), used as a marker for oligodendrocyte myelin membrane. Treatment with insulin alone increased MBP levels, but no changes were observed in the presence of insulin plus H(2)O(2). In contrast, incubation with Trolox completely prevented H(2)O(2)-induced decrease in MBP expression, suggesting that vitamin E analogues may prevent against oligodendrocyte oxidative damage.


Assuntos
Cromanos/farmacologia , Peróxido de Hidrogênio/farmacologia , Bainha de Mielina/química , Oligodendroglia/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Caspase 3/metabolismo , Sobrevivência Celular , Fragmentação do DNA , Peróxido de Hidrogênio/metabolismo , Insulina/química , Proteína Básica da Mielina/química , Estresse Oxidativo , Ratos , Água/química
9.
J Control Release ; 262: 247-258, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28687495

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane vesicles virtually secreted by all cells, including brain cells. EVs are a major term that includes apoptotic bodies, microvesicles and exosomes. The release of EVs has been recognized as an important modulator in cross-talking between neurons, astrocytes, microglia and oligodendrocytes, not only in central nervous system (CNS) physiology but also in neurodegenerative and neuroinflammatory disease states as well as in brain tumors, such as glioma. EVs are able to cross the blood brain barrier (BBB), spread to body fluids and reach distant tissues. This prominent spreading ability has suggested that EVs can be exploited into several different clinical applications ranging from biomarkers to therapeutic carriers. Exosomes, the well-studied group of EVs, have been emerging as a promising tool for therapeutic delivery strategies due to their intrinsic features, such as the stability, biocompatibility and stealth capacity when circulating in bloodstream, the ability to overcome natural barriers and inherent targeting properties. Over the last years, it became apparent that EVs can be loaded with specific cargoes directly in isolated EVs or by modulation of producer cells. In addition, the engineering of its membrane for targeting purposes is expected to allow generating carriers with unprecedented abilities for delivery in specific organs or tissues. Nevertheless, some challenges remain regarding the loading and targeting of EVs for which more research is necessary, and will be discussed in this review. Recently-emerged promising derivations are also discussed, such as exosome associated with adeno-associated virus (AAV) vectors (vexosomes), enveloped protein nanocages (EPNs) and exosome-mimetic nanovesicles. This article provides an updated review of this fast-progressing field of EVs and their role in brain diseases, particularly focusing in their therapeutic applications.


Assuntos
Encefalopatias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Animais , Encéfalo/metabolismo , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico
10.
Free Radic Biol Med ; 62: 186-201, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23743292

RESUMO

Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.


Assuntos
Mitocôndrias/metabolismo , Estresse Oxidativo , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Anfetamina/toxicidade , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Drogas Ilícitas/toxicidade , Mitocôndrias/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Ubiquitina/metabolismo , alfa-Sinucleína/genética
11.
Free Radic Biol Med ; 53(9): 1791-806, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22967820

RESUMO

Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/complicações , Anfetaminas/toxicidade , Animais , Estimulantes do Sistema Nervoso Central/toxicidade , Dopamina/metabolismo , Dopamina/fisiologia , Humanos , Mitocôndrias/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa