Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(1): 97-115, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34906330

RESUMO

Genetic factors and estrogen deficiency contribute to the development of osteoporosis. The single-nucleotide polymorphism (SNP) rs2887571 is predicted from genome-wide association studies (GWASs) to associate with osteoporosis but has had an unknown mechanism. Analysis of osteoblasts from 110 different individuals who underwent joint replacement revealed that the genotype of rs2887571 correlates with WNT5B expression. Analysis of our ChIP-sequencing data revealed that SNP rs2887571 overlaps with an estrogen receptor alpha (ERα) binding site. Here we show that 17ß-estradiol (E2) suppresses WNT5B expression and further demonstrate the mechanism of ERα binding at the enhancer containing rs2887571 to suppress WNT5B expression differentially in each genotype. ERα interacts with NFATc1, which is predicted to bind directly at rs2887571. CRISPR-Cas9 and ChIP-qPCR experiments confirm differential regulation of WNT5B between each allele. Homozygous GG has a higher binding affinity for ERα than homozygous AA and results in greater suppression of WNT5B expression. Functionally, WNT5B represses alkaline phosphatase expression and activity, decreasing osteoblast differentiation and mineralization. Furthermore, WNT5B increases interleukin-6 expression and suppresses E2-induced expression of alkaline phosphatase during osteoblast differentiation. We show that WNT5B suppresses the differentiation of osteoblasts via receptor tyrosine kinase-like orphan receptor 1/2 (ROR1/2), which activates DVL2/3/RAC1/CDC42/JNK/SIN3A signaling and inhibits ß-catenin activity. Together, our data provide mechanistic insight into how ERα and NFATc1 regulate the non-coding SNP rs2887571, as well as the function of WNT5B on osteoblasts, which could provide alternative therapeutic targets for osteoporosis.


Assuntos
Densidade Óssea , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Wnt/genética , Adipogenia , Alelos , Animais , Sítios de Ligação , Densidade Óssea/genética , Diferenciação Celular/genética , Células Cultivadas , Bases de Dados Genéticas , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Osteogênese/genética , Ligação Proteica , Transdução de Sinais , Proteínas Wnt/metabolismo
2.
Semin Cell Dev Biol ; 125: 11-16, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34635443

RESUMO

The Wnt signaling ligand WNT5B is implicated in various developmental pathways, both in normal and pathological physiology. Most of the research on WNT5B has been associated with expression analysis and disease states, leaving the signaling pathways underexplored. Here, we review the current understandings of WNT5B's regulation of signal transduction, from receptors to downstream mediators and transcription factors. We also describe its roles in ß-catenin-dependent and ß-catenin-independent (Planar Cell Polarity and Wnt/Ca2+) Wnt signaling.


Assuntos
Proteínas Wnt , beta Catenina , Polaridade Celular , Ligantes , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
3.
Hum Genet ; 141(12): 1849-1861, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35678873

RESUMO

Osteoporosis is a serious public health problem that affects 200 million people worldwide. Genome-wide association studies have revealed the association between several single nucleotide polymorphisms (SNPs) near WNT/ß-catenin signaling genes and bone mineral density (BMD). The activation of ß-catenin by WNT ligands is required for osteoblast differentiation. SNP rs9921222 is an intronic variant of AXIN1 (a scaffold protein in the destruction complex that regulates ß-catenin signaling) that correlates with BMD. However, the biological mechanism of SNP rs9921222 has never been reported. Here, we show that the genotype of SNP rs9921222 correlates with the expression of AXIN1 in human osteoblasts. RNA and genomic DNA were analyzed from primary osteoblasts from 111 different individuals. Homozygous TT at rs9921222 correlates with a higher expression of AXIN1 than homozygous CC. Regional association analysis showed that rs9921222 is in high linkage disequilibrium (LD) with SNP rs10794639. In silico transcription factor analysis predicted that rs9921222 is within a GATA4 motif and rs10794639 is adjacent to an estrogen receptor alpha (ERα) motif. Mechanistically, GATA4 and ERα bind at SNPs rs9921222 and rs10794639 as detected by ChIP-qPCR. Luciferase assays demonstrate that rs9921222 is the causal SNP to alter ERα and GATA4 binding. GATA4 promoted the expression, and in contrast, ERα suppressed the expression of AXIN1 via the histone deacetylase complex member SIN3A. Functionally, the level of AXIN1 negatively correlates with the level of transcriptionally active ß-catenin. In summary, we have discovered a molecular mechanism of the SNP rs9921222 to regulate AXIN1 through GATA4 and ERα binding in human osteoblasts.


Assuntos
Receptor alfa de Estrogênio , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Receptor alfa de Estrogênio/genética , Proteína Axina/genética , Proteína Axina/metabolismo , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla , Osteoblastos/metabolismo , Via de Sinalização Wnt/genética , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
4.
Clin Transl Med ; 14(5): e1670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689429

RESUMO

BACKGROUND: Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS: Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS: In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS: Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS: WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Osteossarcoma , Proteínas Wnt , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Animais , Camundongos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Metástase Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral
5.
Front Cell Dev Biol ; 11: 1120365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814601

RESUMO

WNT10B, a member of the WNT family of secreted glycoproteins, activates the WNT/ß-catenin signaling cascade to control proliferation, stemness, pluripotency, and cell fate decisions. WNT10B plays roles in many tissues, including bone, adipocytes, skin, hair, muscle, placenta, and the immune system. Aberrant WNT10B signaling leads to several diseases, such as osteoporosis, obesity, split-hand/foot malformation (SHFM), fibrosis, dental anomalies, and cancer. We reviewed WNT10B a decade ago, and here we provide a comprehensive update to the field. Novel research on WNT10B has expanded to many more tissues and diseases. WNT10B polymorphisms and mutations correlate with many phenotypes, including bone mineral density, obesity, pig litter size, dog elbow dysplasia, and cow body size. In addition, the field has focused on the regulation of WNT10B using upstream mediators, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). We also discussed the therapeutic implications of WNT10B regulation. In summary, research conducted during 2012-2022 revealed several new, diverse functions in the role of WNT10B in physiology and disease.

6.
Drug Metab Pharmacokinet ; 48: 100471, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669926

RESUMO

The brain penetration of methotrexate (MTX) and its metabolite 7-hydroxymethotrexate (7OHMTX) was characterized in non-tumor bearing mice and mice bearing orthotopic Group 3 medulloblastoma. Plasma pharmacokinetic studies and cerebral and ventricular microdialysis studies were performed in animals dosed with 200 or 1000 mg/kg MTX by IV bolus. Plasma, brain/tumor extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF) MTX and 7OHMTX concentration-time data were analyzed by validated LC-MS/MS methods and modeled using a population-based pharmacokinetic approach and a hybrid physiologically-based model structure for the brain compartments. Brain penetration was similar for MTX and 7OHMTX and was not significantly different between non-tumor and tumor bearing mice. Overall, mean (±SD) model-derived unbound plasma to ECF partition coefficient Kp,uu were 0.17 (0.09) and 0.17 (0.12) for MTX and 7OHMTX, respectively. Unbound plasma to CSF Kp,uu were 0.11 (0.06) and 0.18 (0.09) for MTX and 7OHMTX, respectively. The plasma and brain model were scaled to children using allometric principles and pediatric physiological parameters. Model-based simulations were adequately overlaid with digitized plasma and CSF lumbar data collected in children receiving different MTX systemic infusions. This model can be used to further explore and optimize methotrexate dosing regimens in children with brain tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Camundongos , Animais , Meduloblastoma/metabolismo , Metotrexato , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
7.
J Dev Biol ; 11(3)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37754840

RESUMO

Estrogens, which bind to estrogen receptor alpha (ERα), are important for proper bone mineral density. When women go through menopause, estrogen levels decrease, and there is a decrease in bone quality, along with an increased risk for fractures. We previously identified an enhancer near FOXC1 as the most significantly enriched binding site for estrogen receptor alpha (ERα) in osteoblasts. FOXC1 is a transcription factor belonging to a large group of proteins known as forkhead box genes and is an important regulator of bone formation. Here, we demonstrate that 17ß-estradiol (E2) increases the mRNA and protein levels of FOXC1 in primary mouse and human osteoblasts. GATA4 is a pioneer factor for ERα and it is also recruited to enhancers near Foxc1. Knockdown of Gata4 in mouse osteoblasts in vitro decreases Foxc1 expression as does knockout of Gata4 in vivo. Functionally, GATA4 and FOXC1 interact and regulate osteoblast proteins such as RUNX2, as demonstrated by ChIP-reChIP and luciferase assays. The most enriched motif in GATA4 binding sites from ChIP-seq is for FOXC1, supporting the notion that GATA4 and FOXC1 cooperate in regulating osteoblast differentiation. Together, these data demonstrate the interactions of the transcription factors ERα, GATA4, and FOXC1 to regulate each other's expression and other osteoblast differentiation genes.

8.
Front Cell Dev Biol ; 9: 724948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368169

RESUMO

[This corrects the article DOI: 10.3389/fcell.2021.667581.].

9.
Front Cell Dev Biol ; 9: 667581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017835

RESUMO

WNT5B, a member of the WNT family of proteins that is closely related to WNT5A, is required for cell migration, cell proliferation, or cell differentiation in many cell types. WNT5B signals through the non-canonical ß-catenin-independent signaling pathway and often functions as an antagonist of canonical WNT signaling. Although WNT5B has a high amino acid identity with WNT5A and is often assumed to have similar activities, WNT5B often exhibits unique expression patterns and functions. Here, we describe the distinct effects and mechanisms of WNT5B on development, bone, adipose tissue, cardiac tissue, the nervous system, the mammary gland, the lung and hematopoietic cells, compared to WNT5A. We also highlight aberrances in non-canonical WNT5B signaling contributing to diseases such as osteoarthritis, osteoporosis, obesity, type 2 diabetes mellitus, neuropathology, and chronic diseases associated with aging, as well as various cancers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa