Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Sci Technol ; 46(5): 2699-707, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22304464

RESUMO

An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds.


Assuntos
Poluentes Atmosféricos/metabolismo , Atmosfera/química , Clima , Gases/metabolismo , Árvores/metabolismo , Poluentes Atmosféricos/análise , Mudança Climática , Gases/análise , Luz , Estações do Ano , Fatores de Tempo , Volatilização
3.
J Adv Model Earth Syst ; 14(8): 5093-5105, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34721762

RESUMO

The dry deposition process refers to flux loss of an atmospheric pollutant due to uptake of the pollutant by the Earth's surfaces, including vegetation, underlying soil, and any other surface types. In chemistry transport models (CTMs), the dry deposition flux of a chemical species is typically calculated as the product of its surface layer concentration and its dry deposition velocity (V d); the latter is a variable that needs to be highly empirically parameterized due to too many meteorological, biological, and chemical factors affecting this process. The gaseous dry deposition scheme of Zhang et al. (2003) parameterizes V d for 31 inorganic and organic gaseous species. The present study extends the scheme of Zhang et al. (2003) to include an additional 12 oxidized volatile organic compounds (oVOCs) and hydrogen cyanide (HCN), while keeping the original model structure and formulas, to meet the demand of CTMs with increasing complexity. Model parameters for these additional chemical species are empirically chosen based on their physicochemical properties, namely the effective Henry's law constants and oxidizing capacities. Modeled V d values are compared against field flux measurements over a mixed forest in the southeastern US during June 2013. The model captures the basic features of the diel cycles of the observed V d. Modeled V d values are comparable to the measurements for most of the oVOCs at night. However, modeled V d values are mostly around 1 cm s-1 during daytime, which is much smaller than the observed daytime maxima of 2-5 cm s-1. Analysis of the individual resistance terms and uptake pathways suggests that flux divergence due to fast atmospheric chemical reactions near the canopy was likely the main cause of the large model-measurement discrepancies during daytime. The extended dry deposition scheme likely provides conservative V d values for many oVOCs. While higher V d values and bidirectional fluxes can be simulated by coupling key atmospheric chemical processes into the dry deposition scheme, we suggest that more experimental evidence of high oVOC V d values at additional sites is required to confirm the broader applicability of the high values studied here. The underlying processes leading to high measured oVOC V d values require further investigation.

5.
Environ Sci Process Impacts ; 20(4): 708-733, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29595202

RESUMO

A geographic enigma is that present-day atmospheric deposition of mercury in the Upper Peninsula of Michigan is low (48%) and that regional industrial emissions have declined substantially (ca. 81% reduction) relative to downstate. Mercury levels should be declining. However, state (MDEQ) surveys of rivers and lakes revealed elevated total mercury (THg) in Upper Peninsula waters and sediment relative to downstate. Moreover, Western Upper Peninsula (WUP) fish possess higher methyl mercury (MeHg) levels than Northern Lower Peninsula (NLP) fish. A contributing explanation for elevated THg loading is that a century ago the Upper Peninsula was a major industrial region, centered on mining. Many regional ores (silver, copper, zinc, massive sulfides) contain mercury in part per million concentrations. Copper smelters and iron furnace-taconite operations broadcast mercury almost continuously for 140 years, whereas mills discharged tailings and old mine shafts leaked contaminated water. We show that mercury emissions from copper and iron operations were substantial (60-650 kg per year) and dispersed over relatively large areas. Moreover, lake sediments in the vicinity of mining operations have higher THg concentrations. Sediment profiles from the Keweenaw Waterway show that THg accumulation increased 50- to 400-fold above modern-day atmospheric deposition levels during active mining and smelting operations, with lingering MeHg effects. High MeHg concentrations are geographically correlated with low pH and dissolved organic carbon (DOC), a consequence of biogeochemical cycling in wetlands, characteristic of the Upper Peninsula. DOC can mobilize metals and elevate MeHg concentrations. We argue that mercury loading from mining is historically superimposed upon strong regional wetland effects, producing a combined elevation of both THg and MeHg in the Western Upper Peninsula.


Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Lagos/química , Mercúrio/análise , Mineração , Rios/química , Poluentes Químicos da Água/análise , Animais , Michigan , Áreas Alagadas
6.
J Chromatogr A ; 1140(1-2): 1-12, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17150222

RESUMO

A novel method for collection and analysis of vapor-phase semivolatile organic compounds (SOCs) in ambient air is presented. The method utilizes thermal desorption of SOCs trapped in diffusion denuders coupled with cryogenic preconcentration on Tenax-TA and analysis by high resolution gas chromatography (GC)-electron-capture detection (ECD). The sampling and analysis methods employ custom-fabricated multicapillary diffusion denuders, a hot gas spike (HGS) apparatus to load known quantities of thermally stable standards into diffusion denuders prior to sample collection, a custom-fabricated oven to thermally desorb SOCs from the diffusion denuder, and a programmable temperature vaporization (PTV) inlet containing a liner packed with Tenax-TA for effective preconcentration of the analytes and water management. High flow rates into the PTV inlet of 750mLmin(-1)during thermal desorption are ca. a factor of ten greater than typically used. To improve resolution and retention time stability, the thermal desorption and PTV inlet programming procedure includes three steps to prevent water from entering the analytic column while effectively transferring the analytes into the GC system. The instrumentation and procedures provide virtually complete and consistent transfer of analytes collected from ambient air into the GC evidenced by recovery of seven replicates of four internal standards of 90.7+/-4.0-120+/-23% (mean+/-95% confidence interval, CI). Retention time based compound identification is facilitated by low retention time variability with an average 95% CI of 0.024min for sixteen replicates of eight standards. Procedure details and performance metrics as well as ambient sampling results are presented.


Assuntos
Ar/análise , Cromatografia Gasosa/métodos , Compostos Orgânicos/análise , Difusão , Temperatura Alta , Volatilização
7.
Chemosphere ; 134: 98-105, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25929871

RESUMO

We characterized distributions of 23 polycyclic aromatic hydrocarbons (Σ23PAH) and nine oxygenated PAHs (Σ9OPAH) in four remote forests. We observed highest Σ23PAH and Σ9OPAH concentrations in a coniferous forest in Florida, particularly in organic layers which we attributed to frequent prescribed burning. Across sites, Σ23PAH and Σ9OPAH concentrations strongly increased from surface to humidified organic layers (+1626%) where concentrations reached up to 584 ng g(-1). Concentrations in mineral soils were lower (average 37 ± 8 ng g(-1)); but when standardized per unit organic carbon (OC), PAH/OC and OPAH/OC ratios were at or above levels observed in organic layers. Accumulation in litter and soils (i.e., enrichment factors with depth) negatively correlated with octanol-water partition coefficients (Kow) and therefore was linked to water solubility of compounds. Concentrations of Σ9OPAHs ranged from 6 ± 6 ng g(-1) to 39 ± 25 ng g(-1) in organic layers, and from 3 ± 1 ng g(-1) to 11 ± 3 ng g(-1) in mineral soils, and were significantly and positively correlated to Σ23PAHs concentrations (r(2) of 0.90) across sites and horizons. While OPAH concentrations generally decreased from organic layers to mineral soil horizons, OPAH/OC ratios increased more strongly with depth compared to PAHs, in particular for anthrone, anthraquinone, fluorenone, and acenaphthenequinone. The strong vertical accumulation of OPAH relative to OC was exponentially and negatively correlated to C/N ratios (r(2)=0.67), a measure that often is used for tissue age. In fact, C/N ratios alone explained two-thirds of the variability in OPAH/OC ratios suggesting particularly high retention, sorption, and persistency of OPAHs in old, decomposed carbon fractions.


Assuntos
Monitoramento Ambiental , Florestas , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Solo/química , Carbono , Respiração Celular , Minerais/análise , Oxigênio , Estados Unidos
8.
J Chromatogr A ; 1217(3): 256-63, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19959174

RESUMO

A modeling approach is presented to predict the sorptive sampling collection efficiency of gaseous semivolatile organic compounds (SOCs) and the artifact caused by collection of particle-associated SOCs in multicapillary diffusion denuders containing polydimethylsiloxane (PDMS) stationary phase. Approaches are presented to estimate the equilibrium PDMS-gas partition coefficient (K(pdms)) from a solvation parameter model for any compound, and, for nonpolar compounds, from the octanol-air partition coefficient (K(oa)) if measured K(pdms) values are not available. These estimated K(pdms) values are compared with K(pdms) measured by gas chromatography. Breakthrough fraction was measured for SOCs collected from ambient air using high-flow (300 L min(-1)) and low-flow (13 L min(-1)) denuders under a range of sampling conditions (-10 to 25 degrees C; 11-100% relative humidity). Measured breakthrough fraction agreed with predictions based on frontal chromatography theory using K(pdms) and equations of Golay, Lövkvist and Jönsson within measurement precision. Analytes included hexachlorobenzene, 144 polychlorinated biphenyl congeners, and polybrominated diphenyl ethers 47 and 99. Atmospheric particle transmission efficiency was measured for the high-flow denuder (0.037-6.3 microm diameter), and low-flow denuder (0.015-3.1 microm diameter). Particle transmission predicted using equations of Gormley and Kennedy, Pich, and a modified filter model, agreed within measurement precision (high-flow denuder) or were slightly greater than (low-flow denuder) measured particle transmission. As an example application of the model, breakthrough volume and particle collection artifact for the two denuder designs were predicted as a function of K(oa) for nonpolar SOCs. The modeling approach is a necessary tool for the design and use of denuders for sorptive sampling with PDMS stationary phase.


Assuntos
Cromatografia Gasosa/instrumentação , Cromatografia Gasosa/métodos , Gases/química , Modelos Químicos , Compostos Orgânicos Voláteis/química , Algoritmos , Artefatos , Dimetilpolisiloxanos/química , Distribuição de Poisson , Análise de Regressão
9.
Environ Sci Technol ; 44(6): 2098-104, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20148550

RESUMO

A high flow rate (300 L min(-1)) multicapillary denuder was designed to collect trace atmospheric semivolatile organic compounds (SOCs). The denuder is coated with a reusable, polydimethylsiloxane stationary phase as a nonselective absorbent for SOCs. A solvent-free thermal desorption method was developed, including sample cleanup, that is selective for nonpolar SOCs, and has low consumables cost per sample. The entire sample is transferred into the gas chromatograph to minimize the sampling time required to collect detectable analyte mass. Trace concentrations (0.1-100 pg m(-3)) of polychlorinated biphenyls and hexachlorobenzene were measured in the atmosphere near Lake Superior in sample times of 3.2-6.2 h. Overall method precision was determined using field duplicates and compared to the conventional high-volume sampler method. Method precision (coefficient of variation) of 16% was found for the high-flow denuder compared to 21% for the high-volume method. The relative difference between the two methods was 25%, with the high-flow denuder method giving generally lower concentrations. The high-flow denuder is an alternative to high-volume or passive samplers when it is desirable to separate gaseous from particle-associated SOCs upstream of a filter. The method is advantageous for studies that require high temporal resolution.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Atmosfera/química , Monitoramento Ambiental/instrumentação , Hexaclorobenzeno/análise , Hexaclorobenzeno/química , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Compostos Orgânicos Voláteis/química
10.
J Chromatogr A ; 1216(32): 5940-8, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19570539

RESUMO

A novel gas-phase cleanup method was developed for use with a thermal desorption method for analysis of trace semivolatile organic compounds (SOCs) in the atmosphere using diffusion denuder samplers to separate gas-phase from particle-associated fractions. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds that is present in ambient air samples. Abraham solvation parameters were found to be useful predictors of recovery of compounds through the cleanup method; most compounds with A+B<0.3 and L

Assuntos
Poluentes Atmosféricos/análise , Cromatografia Gasosa/métodos , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise , Éteres Difenil Halogenados/análise , Bifenilos Policlorados/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Environ Sci Technol ; 39(21): 8411-9, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16294881

RESUMO

We report initial measurements of concentrations and net air-water exchange fluxes of target persistent bioaccumulative toxicants (PBTs) in Lake Superior utilizing techniques not previously applied for this purpose. Gaseous PBTs are collected in diffusion denuders containing sections of commercial chromatography columns and subsequently thermally extracted into the cooled injection inlet of a high-resolution gas chromatograph. The PBT sampling/analytical methods enable accurate determination of gas-phase PBT concentration and micrometeorological measurement of fluxes to be carried out. PBT fluxes are measured by the modified Bowen ratio technique in which sensible heat flux is related to PBT flux, with the assumption of identical transfer velocities of heat and PBTs between two heights in the atmospheric surface layer. Micrometeorological measurement of flux accounts for all sources of resistance to mass transfer, including atmospheric stability effects, surface films, waves, sea spray, and bubbles. The sensible heatflux, PBT concentration, and PBT flux measurements carried out in 14 2- or 3-h periods during seven sampling events in Lake Superior in summer and fall 2002 and spring 2003 demonstrate advantages under the constraints of the techniques. The uncertainty of the flux measurements was typically in the range from 1% to 160%. Gaseous concentrations of a-hexachlorocyclohexane (alpha-HCH) and hexachlorobenzene (HCB) over Lake Superior were in the range from 6 to 170 and 12-95 pg/m3, respectively. Fluxes out of Lake Superior were measurable in 75% of the cases in which a concentration gradient was measured, and were in the range from -0.17 to +0.064 ng/m2 x h for alpha-HCH and from -0.60 to -0.093 ng/m2 x h for HCB.


Assuntos
Ar/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Doce , Conceitos Meteorológicos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa