RESUMO
BACKGROUND: The thymus is a glandular organ that is essential for the formation of the adaptive immune system by educating developing T cells. The thymus is most active during childhood and involutes around the time of adolescence, resulting in a severe reduction or absence of naive T-cell output. The ability to generate a patient-derived human thymus would provide an attractive research platform and enable the development of novel cell therapies. OBJECTIVES: This study sought to systematically evaluate signaling pathways to develop a refined direct differentiation protocol that generates patient-derived thymic epithelial progenitor cells from multiple induced pluripotent stem cells (iPSCs) that can further differentiate into functional patient-derived thymic epithelial cells on transplantation into athymic nude mice. METHODS: Directed differentiation of iPSC generated TEPs that were transplanted into nude mice. Between 14 and 19 weeks posttransplantation, grafts were removed and analyzed by flow cytometry, quantitative PCR, bulk RNA sequencing, and single-cell RNA sequencing for markers of thymic-cell and T-cell development. RESULTS: A direct differentiation protocol that allows the generation of patient-derived thymic epithelial progenitor cells from multiple iPSC lines is described. On transplantation into athymic nude mice, patient-derived thymic epithelial progenitor cells further differentiate into functional patient-derived thymic epithelial cells that can facilitate the development of T cells. Single-cell RNA sequencing analysis of iPSC-derived grafts shows characteristic thymic subpopulations and patient-derived thymic epithelial cell populations that are indistinguishable from TECs present in primary neonatal thymus tissue. CONCLUSIONS: These findings provide important insights and resources for researchers focusing on human thymus biology.
Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Linfócitos T/fisiologia , Timo/citologia , Animais , Diferenciação Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Humanos , Camundongos , Análise de Sequência de RNA , Timo/fisiologiaRESUMO
BACKGROUND: Cyst compression of renal tubules plays a role in the progression of autosomal dominant polycystic kidney disease (ADPKD) and may induce expression of kidney injury molecule-1 (KIM-1). Whether urinary KIM-1 indexed for creatinine (uKIM-1/Cr) is a prognostic marker of disease progression in ADPKD is unknown.In this secondary analysis of a prospective cohort study, we sought to determine whether patients with high as opposed to low uKIM-1/CR at baseline had greater rates of eGFR loss and height-adjusted total kidney volume (HtTKV) increase. METHODS: Baseline uKIM-1/Cr values were obtained from 754 participants in Halt Progression of Polycystic Kidney Disease (HALT-PKD) studies A (early ADPKD) and B (late ADPKD). The predictor was uKIM-1/Cr, which was dichotomized by a median value of 0.2417 pg/g, and the primary outcomes were measured longitudinally over time. Mixed-effects linear models were used in the analysis to calculate the annual slope of change in eGFR and HtTKV. RESULTS: Patients with high uKIM-1/Cr (above the median) had an annual decline in eGFR that was 0.47 mL/min greater than that in those with low uKIM-1/Cr (p = 0.0015) after adjustment for all considered covariates. This association was seen in study B patients alone (0.45 mL/min; p = 0.009), but not in study A patients alone (0.42 mL/min; p = 0.06). High baseline uKIM-1/Cr was associated with higher HtTKV in the baseline cross-sectional analysis compared to low uKIM-1/Cr (p = 0.02), but there was no difference between the groups in the mixed-effects model annual slopes. CONCLUSION: Elevated baseline uKIM-1/Cr is associated with a greater decline in eGFR over time. Further research is needed to determine whether uKIM-1/Cr improves risk stratification in patients with ADPKD.
Assuntos
Creatinina/urina , Receptor Celular 1 do Vírus da Hepatite A/análise , Rim Policístico Autossômico Dominante/diagnóstico , Adulto , Biomarcadores/urina , Estudos Transversais , Progressão da Doença , Taxa de Filtração Glomerular/fisiologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/fisiopatologia , Rim Policístico Autossômico Dominante/urina , Prognóstico , Estudos Prospectivos , Medição de Risco/métodos , Índice de Gravidade de DoençaRESUMO
In this report, we describe in detail the evolving procedures to optimize humanized mouse cohort generation, including optimal conditioning, choice of lineage for engraftment, threshold for successful engraftment, HNSCC tumor implantation, and immune and stroma cell analyses. We developed a dual infusion protocol of human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs), leading to incremental human bone marrow engraftment, and exponential increase in mature peripheral human immune cells, and intratumor homing that includes a more complete lineage reconstitution. Additionally, we have identified practical rules to predict successful HSPC/MSC expansion, and a peripheral human cell threshold associated with bone marrow engraftment, both of which will optimize cohort generation and management. The tremendous advances in immune therapy in cancer have made the need for appropriate and standardized models more acute than ever, and therefore, we anticipate that this manuscript will have an immediate impact in cancer-related research. The need for more representative tools to investigate the human tumor microenvironment (TME) has led to the development of humanized mouse models. However, the difficulty of immune system engraftment and minimal human immune cell infiltration into implanted xenografts are major challenges. We have developed an improved method for generating mismatched humanized mice (mHM), using a dual infusion of human HSPCs and MSCs, isolated from cord blood and expanded in vitro. Engraftment with both HSPCs and MSCs produces mice with almost twice the percentage of human immune cells in their bone marrow, compared to mice engrafted with HSPCs alone, and yields 9- to 38-fold higher levels of mature peripheral human immune cells. We identified a peripheral mHM blood human B cell threshold that predicts an optimal degree of mouse bone marrow humanization. When head and neck squamous cell carcinoma (HNSCC) tumors are implanted on the flanks of HSPC-MSC engrafted mice, human T cells, B cells, and macrophages infiltrate the stroma of these tumors at 2- to 8-fold higher ratios. In dually HSPC-MSC engrafted mice we also more frequently observed additional types of immune cells, including regulatory T cells, cytotoxic T cells, and MDSCs. Higher humanization was associated with in vivo response to immune-directed therapy. The complex immune environment arising in tumors from dually HSPC-MSC engrafted mice better resembles that of the originating patient's tumor, suggesting an enhanced capability to accurately recapitulate a human TME.
Assuntos
Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/patologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Biomarcadores , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Knockout , Transplante HeterólogoRESUMO
Hyperuricemia may contribute to endothelial dysfunction in CKD. We evaluated whether lowering serum uric acid levels with allopurinol improves endothelial dysfunction in 80 participants ≥18 years of age with stage 3 CKD and asymptomatic hyperuricemia (≥7 mg/dl in men and ≥6 mg/dl in women) randomized in a double-blinded manner to receive placebo or allopurinol for 12 weeks. Randomization was stratified according to presence or absence of diabetes mellitus. We measured vascular endothelial function by brachial artery flow-mediated dilation. No significant differences existed between groups at baseline; 61% of the participants had diabetes mellitus in both groups. The placebo and the allopurinol groups had baseline serum uric acid levels (SDs) of 8.7 (1.6) mg/dl and 8.3 (1.4) mg/dl, respectively, and baseline flow-mediated dilation values (SDs) of 6.0% (5.0%) and 4.8% (5.0%), respectively. Compared with placebo, allopurinol lowered serum uric acid significantly but did not improve endothelial function. In participants without diabetes mellitus, allopurinol associated with a trend toward improved flow-mediated dilation (+1.4% [3.9%] versus -0.7% [4.1%] with placebo), but this was not statistically significant (P=0.26). Furthermore, we did not detect significant differences between groups in BP or serum levels of markers of inflammation and oxidative stress. In conclusion, allopurinol effectively and safely lowered serum uric acid levels in adults with stage 3 CKD and asymptomatic hyperuricemia but did not improve endothelial function in this sample of patients.
Assuntos
Alopurinol/farmacologia , Alopurinol/uso terapêutico , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hiperuricemia/prevenção & controle , Insuficiência Renal Crônica/fisiopatologia , Método Duplo-Cego , Feminino , Humanos , Hiperuricemia/etiologia , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Índice de Gravidade de DoençaRESUMO
Calcium influx in response to T-cell receptor stimulation is a common measure of T-cell signaling. Several calcium indicator dyes have been developed to assess calcium signaling by band-pass flow cytometry. This protocol is designed to measure calcium responses in primary murine T-cells using full spectrum flow cytometry. Total splenocytes are labeled with the ratiometric calcium indicator dye Indo-1, along with a panel of fluorochrome-conjugated antibodies to cell surface molecules. Leveraging the capabilities of full spectrum flow cytometry provides a platform for utilizing a wide array of cell surface stains in combination with Indo-1. Cells are then analyzed in real-time at 37 °C before and after the addition of an anti-CD3 antibody to stimulate the T-cell receptor. After unmixing the spectral signals, the ratio of calcium-bound to calcium-free Indo-1 is calculated and can be visualized over time for each gated population of splenocytes. This technique can allow for the simultaneous analysis of calcium responses in multiple cell populations.
Assuntos
Cálcio , Linfócitos T , Animais , Camundongos , Citometria de Fluxo/métodos , Cálcio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Citoplasma/metabolismoRESUMO
Investigating the dynamics of virus-host interactions in vivo remains an important challenge, often limited by the ability to directly identify virally infected cells. Here, we utilize a beta-lactamase activated fluorescent substrate to identify primary targets of murine gammaherpesvirus 68 (MHV68) infection in the peritoneal cavity. By optimizing substrate and detection conditions, we were able to achieve multiparameter characterization of infected cells and the ensuing host response. MHV68 infection leads to a pronounced increase in immune cells, with CD8+ T cells increasing by 3 days, and total infiltrate peaking around 8 days post-infection. MHV68 infection results in near elimination of large peritoneal macrophages (LPMs) by 8 days post-infection, and a concordant increase in small peritoneal macrophages (SPMs) and monocytes. Infection is associated with prolonged changes to myeloid cells, with a distinct population of MHC IIhigh LPMs emerging by 14 days. Targets of MHV68 infection could be readily detected. Between 1 and 3 days post-infection, MHV68 infects â¼5-10% of peritoneal cells, with >75% being LPMs. By 8 days post-infection, the frequency of MHV68 infection is reduced at least 10-fold, with infection primarily in SPMs, with few infected dendritic cells and B cells. Importantly, limiting dilution analysis indicates that at 3 days post-infection, the majority of MHV68-infected cells harbor latent rather than lytic virus at frequencies consistent with those identified based on reporter gene expression. Our findings demonstrate the utility of the beta-lactamase MHV68 reporter system for high throughput single-cell analysis and identify dynamic changes during primary gammaherpesvirus infection.
RESUMO
Resistance to immunotherapy is a significant challenge, and the scarcity of human models hinders the identification of the underlying mechanisms. To address this limitation, we constructed an autologous humanized mouse (aHM) model with hematopoietic stem and progenitor cells (HSPC) and tumors from 2 melanoma patients progressing to immunotherapy. Unlike mismatched humanized mouse (mHM) models, generated from cord blood-derived HSPCs and tumors from different donors, the aHM recapitulates a patient-specific tumor microenvironment (TME). When patient tumors were implanted on aHM, mHM, and NOD/SCID/IL2rg-/- (NSG) cohorts, tumors appeared earlier and grew faster on NSG and mHM cohorts. We observed that immune cells differentiating in the aHM were relatively more capable of circulating peripherally, invading into tumors and interacting with the TME. A heterologous, human leukocyte antigen (HLA-A) matched cohort also yielded slower growing tumors than non-HLA-matched mHM, indicating that a less permissive immune environment inhibits tumor progression. When the aHM, mHM, and NSG cohorts were treated with immunotherapies mirroring what the originating patients received, tumor growth in the aHM accelerated, similar to the progression observed in the patients. This rapid growth was associated with decreased immune cell infiltration, reduced interferon gamma (IFNγ)-related gene expression, and a reduction in STAT3 phosphorylation, events that were replicated in vitro using tumor-derived cell lines. IMPLICATIONS: Engrafted adult HSPCs give rise to more tumor infiltrative immune cells, increased HLA matching leads to slower tumor initiation and growth, and continuing immunotherapy past progression can paradoxically lead to increased growth.
Assuntos
Imunoterapia/métodos , Melanoma/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
RATIONALE & OBJECTIVE: Hyperuricemia is associated with chronic kidney disease (CKD) progression. We evaluated whether lowering serum uric acid levels improves levels of biomarkers of kidney damage. STUDY DESIGN: Post hoc analysis of clinical trial participants. SETTING & PARTICIPANTS: A double-blind randomized placebo-controlled study designed to lower serum uric acid levels. 80 patients with stage 3 CKD and asymptomatic hyperuricemia were randomly assigned to allopurinol treatment or placebo (300 mg/d) for 12 weeks. EXPOSURE/PREDICTOR: Allopurinol treatment versus placebo. OUTCOMES & MEASURES: We evaluated the change from baseline for the following urinary biomarkers of kidney damage: albumin-creatinine ratio (ACR), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), and transforming growth factor ß1 (TGF-ß1). Additionally, we evaluated CKD Epidemiology Collaboration (CKD-EPI)-estimated glomerular filtration rate (eGFR) and cystatin C eGFR. ANALYTICAL APPROACH: Generalized linear mixed modeling was used. RESULTS: After 12 weeks, allopurinol (compared to placebo) significantly lowered serum uric acid levels with an estimate of -3.3 mg/dL (95% CI, -4.1 to -2.5 mg/dL; P < 0.001). Estimates for the change for allopurinol versus placebo over time were 1.09 (95% CI, 0.77-1.54) for ACR, 0.77 (95% CI, 0.36-1.63) for NGAL, and 2.36 (95% CI, 0.97-5.70) for TGF-ß1. The model did not converge for KIM-1, but Wilcoxon signed rank test showed no significant difference in change from baseline between study groups. There was no significant change observed in CKD-EPI eGFR or cystatin C eGFR. LIMITATIONS: Post hoc analysis and short duration of the study. CONCLUSIONS: Uric acid-lowering with allopurinol is not associated with improvement in levels of biomarkers of kidney damage in patients with asymptomatic hyperuricemia and stage 3 CKD. FUNDING: The study was funded by the National Institutes of Health through a career development award, K23DK088833, and the Clinical and Translational Science Award UL1TR002537. TRIAL REGISTRATION: NCT01228903.
RESUMO
BACKGROUND: Chronic kidney disease (CKD)-mineral and bone disorder (MBD) is a systemic disorder that leads to vascular calcification and accelerated atherosclerosis. Uric acid has been shown to associate with vascular calcification and with carotid intima-media thickness (CIMT) and to suppress the 1 α-hydroxylase enzyme leading to lower 1,25-dihydroxyvitamin D (1,25(OH)2D) and higher intact parathyroid hormone (iPTH) levels. We hypothesized that lowering serum uric acid would reduce CIMT, calcification propensity, and circulating markers of CKD-MBD in CKD. METHODS: This is a post-hoc analysis of a randomized, double-blind study of 80 patients with stage 3 CKD and hyperuricemia who received allopurinol or placebo for 12 weeks. CIMT and T50 were measured as markers of vascular disease and serum calcification propensity, respectively. The following markers of CKD-MBD were measured: serum calcium, phosphorus, vitamin D metabolites, iPTH, and fibroblast growth factor-23 (FGF-23). Expression of extra-renal 1α-hydroxylase was evaluated in endothelial cells of study participants. FINDINGS: Allopurinol successfully lowered serum uric acid levels compared to placebo with an estimate of -3.3 mg/dL (95% C.I. -4.1,-2.5; p < 0.0001). After 12 weeks, however, we found no significant change in CIMT or serum T50. There was not a significant change in vitamin D metabolites, iPTH, FGF-23, or the expression of endothelial 1α-hydroxylase. CONCLUSION: These data suggest that factors other than uric acid may play a more important role in the regulation of CKD- MBD including vascular calcification and vitamin D metabolism in patients with CKD.
Assuntos
Espessura Intima-Media Carotídea , Distúrbio Mineral e Ósseo na Doença Renal Crônica/tratamento farmacológico , Ácido Úrico/sangue , Calcificação Vascular/patologia , Adolescente , Adulto , Idoso , Alopurinol/uso terapêutico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/sangue , Distúrbio Mineral e Ósseo na Doença Renal Crônica/patologia , Método Duplo-Cego , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Hormônio Paratireóideo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/terapia , Vitamina D/metabolismo , Adulto JovemRESUMO
BACKGROUND: Endothelial microparticles are associated with chronic kidney disease (CKD) and complement activation. We hypothesized that the complement pathway is activated in patients with CKD via endothelial microparticles and that complement activation correlates with endothelial dysfunction in CKD. METHODS AND RESULTS: We analyzed complement data of 30 healthy subjects, 30 patients with stage III/IV CKD, and 30 renal transplant recipients with stage III/IV CKD, evaluating the potential correlation of complement fragments with brachial artery flow-mediated dilation, Chronic Kidney Disease Epidemiology Collaboration glomerular filtration rate, and urinary albumin/creatinine ratio. Endothelial microparticles were characterized via proteomic analysis and compared between study groups. Complement fragment Ba was significantly increased in CKD and post-kidney transplant CKD. Plasma Ba levels correlated significantly with lower brachial artery flow-mediated dilation, lower Chronic Kidney Disease Epidemiology Collaboration glomerular filtration rate, and higher urinary albumin/creatinine ratio. Factor D levels were significantly higher in the plasma microparticles of patients with CKD versus healthy controls. Plasma microparticles isolated from patients with CKD and containing factor D activated the alternative pathway in vitro. CONCLUSION: The alternative complement pathway is activated in CKD and correlates with endothelial dysfunction and markers of CKD. Future studies are needed to evaluate whether endothelial microparticles with increased factor D play a pathologic role in CKD-associated vascular disease. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02230202.
Assuntos
Micropartículas Derivadas de Células/metabolismo , Fator B do Complemento/metabolismo , Fator D do Complemento/metabolismo , Via Alternativa do Complemento , Endotélio Vascular/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Adulto , Idoso , Artéria Braquial/diagnóstico por imagem , Artéria Braquial/fisiopatologia , Estudos de Casos e Controles , Ativação do Complemento , Complemento C4a/metabolismo , Complemento C5a/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Células Endoteliais , Feminino , Taxa de Filtração Glomerular , Humanos , Transplante de Rim , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Proteômica , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/cirurgia , Índice de Gravidade de Doença , VasodilataçãoRESUMO
Intestinal epithelial barrier repair is vital for remission in inflammatory bowel disease (IBD). Extracellular adenosine signaling has been implicated in promoting restoration of epithelial barrier function. Currently, no clinically approved agents target this pathway. Adenosine signaling is terminated by uptake from the extracellular space via equilibrative nucleoside transporters (ENTs). We hypothesized that ENT inhibition could dampen intestinal inflammation. Initial studies demonstrated transcriptional repression of ENT1 and ENT2 in IBD biopsies or in murine IBD models. Subsequent studies in mice with global Ent1 or Ent2 deletion revealed selective protection of Ent2-/- mice. Elevated intestinal adenosine levels in conjunction with abolished protection following pharmacologic blockade of A2B adenosine receptors implicate adenosine signaling as the mechanism of gut protection in Ent2-/- mice. Additional studies in mice with tissue-specific deletion of Ent2 uncovered epithelial Ent2 as the target. Moreover, intestinal protection provided by a selective Ent2 inhibitor was abolished in mice with epithelium-specific deletion of Ent2 or the A2B adenosine receptor. Taken together, these findings indicate that increased mucosal A2B signaling following repression or deletion of epithelial Ent2 coordinates the resolution of intestinal inflammation. This study suggests the presence of a targetable purinergic network within the intestinal epithelium designed to limit tissue inflammation.
Assuntos
Colite Ulcerativa/patologia , Doença de Crohn/patologia , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Mucosa Intestinal/patologia , Receptor A2B de Adenosina/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Animais , Biópsia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Doença de Crohn/imunologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 2 de Nucleosídeo/genética , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologiaRESUMO
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.