Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Mol Pharm ; 19(4): 1047-1058, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238565

RESUMO

The coronavirus disease of 2019 (COVID-19) pandemic launched an unprecedented global effort to rapidly develop vaccines to stem the spread of the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). Messenger ribonucleic acid (mRNA) vaccines were developed quickly by companies that were actively developing mRNA therapeutics and vaccines for other indications, leading to two mRNA vaccines being not only the first SARS-CoV-2 vaccines to be approved for emergency use but also the first mRNA drugs to gain emergency use authorization and to eventually gain full approval. This was possible partly because mRNA sequences can be altered to encode nearly any protein without significantly altering its chemical properties, allowing the drug substance to be a modular component of the drug product. Lipid nanoparticle (LNP) technology required to protect the ribonucleic acid (RNA) and mediate delivery into the cytoplasm of cells is likewise modular, as are technologies and infrastructure required to encapsulate the RNA into the LNP. This enabled the rapid adaptation of the technology to a new target. Upon the coattails of the clinical success of mRNA vaccines, this modularity will pave the way for future RNA medicines for cancer, gene therapy, and RNA engineered cell therapies. In this review, trends in the publication records and clinical trial registrations are tallied to show the sharp intensification in preclinical and clinical research for RNA medicines. Demand for the manufacturing of both the RNA drug substance (DS) and the LNP drug product (DP) has already been strained, causing shortages of the vaccine, and the rise in development and translation of other mRNA drugs in the coming years will exacerbate this strain. To estimate demand for DP manufacturing, the dosing requirements for the preclinical and clinical studies of the two approved mRNA vaccines were examined. To understand the current state of mRNA-LNP production, current methods and technologies are reviewed, as are current and announced global capacities for commercial manufacturing. Finally, a vision is rationalized for how emerging technologies such as self-amplifying mRNA, microfluidic production, and trends toward integrated and distributed manufacturing will shape the future of RNA manufacturing and unlock the potential for an RNA medicine revolution.


Assuntos
COVID-19 , Vacinas contra COVID-19 , Humanos , Lipossomos , Nanopartículas , RNA Mensageiro/metabolismo , SARS-CoV-2/genética
2.
Nanomedicine ; 40: 102506, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34875352

RESUMO

Oncolytic viruses (OVs) selectively replicate in and destroy cancer cells resulting in anti-tumor immunity. However, clinical use remains a challenge because of virus clearance upon intravenous delivery. OV packaging using a nanomedicine approach could overcome this. Here we encapsulate an oncolytic adenovirus (Ad[I/PPT-E1A]) into CCL2-coated liposomes in order to exploit recruitment of CCR2-expressing circulating monocytes into tumors. We demonstrate successful encapsulation of Ad[I/PPT-E1A] into CCL2-coated liposomes that were preferentially taken up by CCR2-expressing monocytes. No complex-related toxicities were observed following incubation with prostate tumor cells and the encapsulation did not affect virus oncolytic activity in vitro. Furthermore, intravenous administration of our nanomedicine resulted in a significant reduction in tumor size and pulmonary metastasis in prostate cancer-bearing mice whereby a 1000-fold less virus was needed compared to Ad[I/PPT-E1A] alone. Taken together our data provide an opportunity to target OVs via circulation to inaccessible tumors using liposome-assisted drug delivery.


Assuntos
Adenoviridae , Terapia Viral Oncolítica , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Vetores Genéticos , Humanos , Lipossomos , Masculino , Camundongos , Monócitos , Terapia Viral Oncolítica/métodos
3.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408763

RESUMO

Silk fibroin nanoprecipitation by organic desolvation in semi-batch and microfluidic formats provides promising bottom-up routes for manufacturing narrow polydispersity, spherical silk nanoparticles. The translation of silk nanoparticle production to pilot, clinical, and industrial scales can be aided through insight into the property drifts incited by nanoprecipitation scale-up and the identification of critical process parameters to maintain throughout scaling. Here, we report the reproducibility of silk nanoprecipitation on volumetric scale-up in low-shear, semi-batch systems and estimate the reproducibility of chip parallelization for volumetric scale-up in a high shear, staggered herringbone micromixer. We showed that silk precursor feeds processed in an unstirred semi-batch system (mixing time > 120 s) displayed significant changes in the nanoparticle physicochemical and crystalline properties following a 12-fold increase in volumetric scale between 1.8 and 21.9 mL while the physicochemical properties stayed constant following a further 6-fold increase in scale to 138 mL. The nanoparticle physicochemical properties showed greater reproducibility after a 6-fold volumetric scale-up when using lower mixing times of greater similarity (8.4 s and 29.4 s) with active stirring at 400 rpm, indicating that the bulk mixing time and average shear rate should be maintained during volumetric scale-up. Conversely, microfluidic manufacture showed high between-batch repeatability and between-chip reproducibility across four participants and microfluidic chips, thereby strengthening chip parallelization as a production strategy for silk nanoparticles at pilot, clinical, and industrial scales.


Assuntos
Fibroínas , Nanopartículas , Humanos , Microfluídica , Nanopartículas/química , Reprodutibilidade dos Testes , Seda/química
4.
Mol Pharm ; 16(10): 4372-4386, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31437396

RESUMO

Cationic liposomes prepared from dimethyldioctadecylammonium bromide (DDAB) and trehalose 6,6'-dibehenate (TDB) are strong liposomal adjuvants. As with many liposome formulations, within the laboratory DDAB:TDB is commonly prepared by the thin-film method, which is difficult to scale-up and gives high batch-to-batch variability. In contrast, controllable technologies such as microfluidics offer robust, continuous, and scale-independent production. Therefore, within this study, we have developed a microfluidic production method for cationic liposomal adjuvants that is scale-independent and produces liposomal adjuvants with analogous biodistribution and immunogenicity compared to those produced by the small-scale lipid hydration method. Subsequently, we further developed the DDAB:TDB adjuvant system to include a lymphatic targeting strategy using microfluidics. By exploiting a biotin-avidin complexation strategy, we were able to manipulate the pharmacokinetic profile and enhance targeting and retention of DDAB:TDB and antigen within the lymph nodes. Interestingly, redirecting these cationic liposomal adjuvants did not translate into notably improved vaccine efficacy.


Assuntos
Adjuvantes Imunológicos/química , Cátions/química , Lipossomos/química , Linfonodos/efeitos dos fármacos , Microfluídica , Compostos de Amônio Quaternário/química , Vacinas contra a Tuberculose/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Feminino , Imunização , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Distribuição Tecidual , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/farmacocinética
5.
Cell Physiol Biochem ; 38(3): 1085-99, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26938586

RESUMO

BACKGROUND/AIMS: Extracellular vesicles (EVs) are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs) and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs) under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C. METHODS: Experiments were performed based on single cell fluorescence imaging, fluorescence activated cell sorter/flow cytometer (FACS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). The released MVs were collected by differential centrifugation and characterized in both their size and zeta potential. RESULTS: Treatment of RBCs with 4-bromo-A23187 (positive control), lysophosphatidic acid (LPA), or phorbol-12 myristate-13 acetate (PMA) in the presence of 2 mM extracellular Ca2+ led to an alteration of cell volume and cell morphology. In stimulated RBCs, exposure of phosphatidylserine (PS) and formation of MVs were observed by using annexin V-FITC. The shedding of MVs was also observed in the case of PMA treatment in the absence of Ca2+, especially under the transmitted bright field illumination. By using SEM, AFM and DLS the morphology and size of stimulated RBCs, MVs were characterized. The sizes of the two populations of MVs were 205.8 ± 51.4 nm and 125.6 ± 31.4 nm, respectively. Adhesion of stimulated RBCs and MVs was observed. The zeta potential of MVs was determined in the range from - 40 mV to - 10 mV depended on the solutions and buffers used. CONCLUSION: An increase of intracellular Ca2+ or an activation of protein kinase C leads to the formation and release of MVs in human RBCs.


Assuntos
Cálcio/farmacologia , Micropartículas Derivadas de Células/ultraestrutura , Eritrócitos/citologia , Proteína Quinase C/metabolismo , Calcimicina/análogos & derivados , Calcimicina/farmacologia , Tamanho Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Contagem de Eritrócitos , Humanos , Lisofosfolipídeos/farmacologia , Microscopia de Força Atômica/métodos , Tamanho da Partícula , Ésteres de Forbol/farmacologia , Fosfatidilserinas/farmacologia , Análise de Célula Única/métodos
6.
Mol Pharm ; 11(1): 197-207, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24171445

RESUMO

Cholesterol is an abundant component of mammalian cell membranes and has been extensively studied as an artificial membrane stabilizer in a wide range of phospholipid liposome systems. In this study, the aim was to investigate the role of cholesterol in cationic liposomal adjuvant system based on dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) which has been shown as a strong adjuvant system for vaccines against a wide range of diseases. Packaging of cholesterol within DDA:TDB liposomes was investigated using differential scanning calorimetery and surface pressure-area isotherms of lipid monolayers; incorporation of cholesterol into liposomal membranes promoted the formation of a liquid-condensed monolayer and removed the main phase transition temperature of the system, resulting in an increased bilayer fluidity and reduced antigen retention in vitro. In vivo biodistribution studies found that this increase in membrane fluidity did not alter deposition of liposomes and antigen at the site of injection. In terms of immune responses, early (12 days after immunization) IgG responses were reduced by inclusion of cholesterol; thereafter there were no differences in antibody (IgG, IgG1, IgG2b) responses promoted by DDA:TDB liposomes with and without cholesterol. However, significantly higher levels of IFN-gamma were induced by DDA:TDB liposomes, and liposome uptake by macrophages in vitro was also shown to be higher for DDA:TDB liposomes compared to their cholesterol-containing counterparts, suggesting that small changes in bilayer mechanics can impact both cellular interactions and immune responses.


Assuntos
Adjuvantes Imunológicos/química , Colesterol/farmacocinética , Glicolipídeos/química , Imunoglobulina G/imunologia , Bicamadas Lipídicas/química , Lipossomos/química , Compostos de Amônio Quaternário/química , Animais , Varredura Diferencial de Calorimetria , Colesterol/administração & dosagem , Colesterol/imunologia , Feminino , Humanos , Imunização , Interferon gama/metabolismo , Bicamadas Lipídicas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transição de Fase , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Distribuição Tecidual
7.
Vaccines (Basel) ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543916

RESUMO

In this study, we consider the influence of biological sex-specific immune responses on the assessment of mRNA vaccines in pre-clinical murine studies. Recognising the established disparities in immune function attributed to genetic and hormonal differences between individuals of different biological sexes, we compared the mRNA expression and immune responses in mice of both biological sexes after intramuscular injection with mRNA incorporated within lipid nanoparticles. Regarding mRNA expression, no significant difference in protein (luciferase) expression at the injection site was observed between female and male mice following intramuscular administration; however, we found that female BALB/c mice exhibit significantly greater total IgG responses across the concentration range of mRNA lipid nanoparticles (LNPs) in comparison to their male counterparts. This study not only contributes to the scientific understanding of mRNA vaccine evaluation but also emphasizes the importance of considering biological sex in vaccine study designs during pre-clinical evaluation in murine studies.

8.
Drug Dev Ind Pharm ; 39(5): 704-15, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22639985

RESUMO

Formulation of solid dispersions is one of the effective methods to increase the rate of solubilization and dissolution of poorly soluble drugs. Solid dispersions of chloramphenicol (CP) and sulphamethoxazole (SX) as model drugs were prepared by melt fusion method using polyethylene glycol 8000 (PEG 8000) as an inert carrier. The dissolution rate of CP and SX were rapid from solid dispersions with low drug and high polymer content. Characterization was performed using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR analysis for the solid dispersions of CP and SX showed that there was no interaction between PEG 8000 and the drugs. Hyper-DSC studies revealed that CP and SX were converted into an amorphous form when formulated as solid dispersion in PEG 8000. Mathematical analysis of the release kinetics demonstrated that drug release from the various formulations followed different mechanisms. Permeability studies demonstrated that both CP and SX when formulated as solid dispersions showed enhanced permeability across Caco-2 cells and CP can be classified as well-absorbed compound when formulated as solid dispersions.


Assuntos
Anti-Infecciosos/farmacocinética , Cloranfenicol/farmacocinética , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Sulfametoxazol/farmacocinética , Tensoativos/química , Anti-Infecciosos/química , Células CACO-2/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Cloranfenicol/química , Humanos , Microscopia Eletrônica de Varredura , Modelos Teóricos , Solubilidade , Sulfametoxazol/química
9.
Int J Pharm ; 644: 123304, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572860

RESUMO

Previously reported gold coated iron oxide nanoparticles (Au-IONP's) have demonstrated their effectiveness as drug delivery vehicles for gemcitabine conjugated to a thermally labile Diels-Alder linker containing a chain of 4 carbon atoms (TTLD4) for the treatment of pancreatic cancer. Heat generated via laser irradiation of Au-IONPs facilitated retro Diels-Alder mediated release in a burst release profile where approximately half of all total release over 180 min occurred within the first 5 min. Two analogues of TTLD4, which differ only in linker chain length (TTLD3 & TTLD6) were synthesised and conjugated to Au-IONP's. Heat-mediated release of gemcitabine at 45 °C over 180 min from these formulations was confirmed to be based on linker length, which was 94%, 76% and 45% for TTLD3, TTLD4 and TTLD6, respectively. Drug loading of the Diels-Alder linkers in a 5:1 Drug/Au-IONP w/w ratio appears to favour those containing an even number of carbons TTLD4 (76%) & TTLD6 (57%) over TTLD3 (25%), possibly due to the linker likely being positioned perpendicular to the Au-IONP surface because of the 120 °C-C bond.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Gencitabina , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Temperatura Alta , Neoplasias Pancreáticas
10.
Int J Pharm ; 648: 123568, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925042

RESUMO

Subunit vaccines that have weak immunogenic activity require adjuvant systems for enhancedcellular and long-acting humoral immune responses. Both lipid-based and polymeric-based particulate adjuvants have been widely investigated to induce the desired immune responses against the subunit vaccines. The adjuvant efficacy of these particulate adjuvants depends upon their physicochemical properties such as particle size, surface charge, shape and their composition. Previously, we showed in vitro effect of adjuvant systems based on combination of chitosan and Salmonella Typhi porins in microparticle or nanoparticle form, which were spherical with positive surface charge. In the present study, we have further developed an adjuvant system based on combination of porins with liposomes (cationic and neutral) and investigated the adjuvant effect of both the liposomal and polymeric systems in BALB/c mice using a model antigen, ovalbumin. Humoral immune responses were determined following priming and booster dose at 15-day intervals. In overall, IgM and IgG levels were induced in the presence of both the liposomal and polymeric adjuvant systems indicating the positive impact of combination with porins. The highest IgM levels were obtained on Day 8, and liposomal adjuvant systems were found to elicit significantly higher IgM levels compared to polymeric systems. IgG levels were increased significantly after booster, particularly more profound with the micro-sized polymeric system when compared to cationic liposomal system with nano-size. Our results demonstrated that the developed particulate systems are promising both as an adjuvant and delivery system, providing enhanced immune responses against subunit antigens, and have the potential for long-term protection.


Assuntos
Lipossomos , Salmonella typhi , Camundongos , Animais , Lipossomos/química , Porinas , Adjuvantes Imunológicos/química , Adjuvantes Farmacêuticos , Antígenos , Vacinas de Subunidades Antigênicas , Imunoglobulina G , Imunoglobulina M
11.
J Pharm Sci ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38163549

RESUMO

Nanoparticles are increasingly implemented in biomedical applications, including the diagnosis and treatment of disease. When exposed to complex biological media, nanoparticles spontaneously interact with their surrounding environment, leading to the surface-adsorption of small and bio- macromolecules- termed the "corona". Corona composition is governed by nanoparticle properties and incubation parameters. While the focus of most studies is on the protein signature of the nanoparticle corona, the impact of experimental protocols on nanoparticle size in the presence of complex biological media, and the impact of nanoparticle recovery from biological media has not yet been reported. Here using a non-degradable robust model, we show how centrifugation-resuspension protocols used for the isolation of nanoparticles from incubation media, incubation duration and shear flow conditions alter nanoparticle parameters including particle size, zeta potential and total protein content. Our results show significant changes in nanoparticle size following exposure to media containing protein under different flow conditions, which also altered the composition of surface-adsorbed proteins profiled by SDS-PAGE. Our in situ analysis of nanoparticle size in media containing protein using particle tracking analysis highlights that centrifugation-resuspension is disruptive to agglomerates that are spontaneously formed in protein containing media, highlighting the need for in situ analytical methods that do not alter the intermediates formed following nanoparticle exposure to biological media. Nanomedicines are mostly intended for parenteral administration, and our findings show that parameters such as shear flow can significantly alter nanoparticle physicochemical parameters. Overall, we show that the centrifugation-resuspension isolation of nanoparticles from media significantly alters particle parameters in addition to the overall protein composition of surface-adsorbed proteins. We recommend that nanoparticle characterization pipelines studying bio-nano interactions during early nanomedicine development consider biologically-relevant shear flow conditions and media composition that can significantly alter particle physical parameters and subsequent conclusions from these studies.

12.
Cell Rep Med ; 4(1): 100899, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36652908

RESUMO

The non-canonical inflammasome sensor caspase-11 and gasdermin D (GSDMD) drive inflammation and pyroptosis, a type of immunogenic cell death that favors cell-mediated immunity (CMI) in cancer, infection, and autoimmunity. Here we show that caspase-11 and GSDMD are required for CD8+ and Th1 responses induced by nanoparticulate vaccine adjuvants. We demonstrate that nanoparticle-induced reactive oxygen species (ROS) are size dependent and essential for CMI, and we identify 50- to 60-nm nanoparticles as optimal inducers of ROS, GSDMD activation, and Th1 and CD8+ responses. We reveal a division of labor for IL-1 and IL-18, where IL-1 supports Th1 and IL-18 promotes CD8+ responses. Exploiting size as a key attribute, we demonstrate that biodegradable poly-lactic co-glycolic acid nanoparticles are potent CMI-inducing adjuvants. Our work implicates ROS and the non-canonical inflammasome in the mode of action of polymeric nanoparticulate adjuvants and establishes adjuvant size as a key design principle for vaccines against cancer and intracellular pathogens.


Assuntos
Inflamassomos , Nanopartículas , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Caspases/metabolismo , Interleucina-1/metabolismo
13.
J Microencapsul ; 29(3): 262-76, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22208705

RESUMO

Target-specific delivery has become an integral area of research in order to increase bioavailability and reduce the toxic effects of drugs. As a drug-delivery option, trigger-release liposomes offer sophisticated targeting and greater control-release capabilities. These are broadly divided into two categories; those that utilise the local environment of the target site where there may be an upregulation in certain enzymes or a change in pH and those liposomes that are triggered by an external physical stimulus such as heat, ultrasound or light. These release mechanisms offer a greater degree of control over when and where the drug is released; furthermore, targeting of diseased tissue is enhanced by incorporation of target-specific components such as antibodies. This review aims to show the development of such trigger release liposome systems and the current research in this field.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos/química , Fosfolipases Tipo C/administração & dosagem , Catálise , Química Farmacêutica/métodos , Portadores de Fármacos , Desenho de Fármacos , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Luz , Modelos Químicos , Fosfolipases A2/química , Pró-Fármacos/química , Temperatura , Ultrassom
14.
Sci Rep ; 12(1): 12448, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859154

RESUMO

Liposomes are a strong supporting tool in vaccine technology, as they are a versatile system that not only act as antigen delivery systems but also adjuvants that can be highly effective at stimulating both innate and adaptive immune responses. Their ability to induce cell-mediated immunity makes their use in vaccines a useful tool in the development of novel, more effective vaccines against intracellular infections (e.g. HIV, malaria and tuberculosis). Currently, screening of novel liposome formulations uses murine in vivo models which generate data that often correlates poorly with human data. In addition, these models are both high cost and low throughput, making them prohibitive for large scale screening of formulation libraries. This study uses the cationic liposome formulation DDA:TDB (known as cationic adjuvant formulation 01 (CAF01)), as a lead formulation, along with other liposome formulations of known in vivo efficacy to develop an in vitro screening tool for liposome formulation development. THP-1-derived macrophages were the model antigen presenting cell used to assess the ability of the liposome formulations to attract, associate with and activate antigen presenting cells in vitro, crucial steps necessary for an effective immune response to antigen. By using a combination of in vitro functions, the study highlights the potential use of an in vitro screening tool, to predict the in vivo efficacy of novel liposome formulations. CAF01 was predicted as the most effective liposome formulation when assessing all in vitro functions and a measure of in vitro activation was able to predict 80% of the liposome correctly for their ability to induce an in vivo IFN-Ò¯ response.


Assuntos
Lipossomos , Vacinas , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Animais , Antígenos , Cátions , Humanos , Imunidade Humoral , Camundongos , Compostos de Amônio Quaternário
15.
RSC Adv ; 12(12): 7357-7373, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424679

RESUMO

Tuning silk fibroin nanoparticle morphology using nanoprecipitation for bottom-up manufacture is an unexplored field that has the potential to improve particle performance characteristics. The aim of this work was to use both semi-batch bulk mixing and micro-mixing to modulate silk nanoparticle morphology by controlling the supersaturation and shear rate during nanoprecipitation. At flow rates where the shear rate was below the critical shear rate for silk, increasing the concentration of silk in both bulk and micro-mixing processes resulted in particle populations of increased sphericity, lower size, and lower polydispersity index. At high flow rates, where the critical shear rate was exceeded, the increased supersaturation with increasing concentration was counteracted by increased rates of shear-induced assembly. The morphology could be tuned from rod-like to spherical assemblies by increasing supersaturation of the high-shear micro-mixing process, thereby supporting a role for fast mixing in the production of narrow-polydispersity silk nanoparticles. This work provides new insight into the effects of shear during nanoprecipitation and provides a framework for scalable manufacture of spherical and rod-like silk nanoparticles.

16.
RSC Adv ; 12(38): 25006-25009, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36199873

RESUMO

[This corrects the article DOI: 10.1039/D1RA07764C.].

17.
Int J Nanomedicine ; 17: 2809-2822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35791309

RESUMO

Background: The manufacture of nanoparticles using manual methods is hampered by its challenging scale-up and poor reproducibility. To overcome this issue, the production of zein nanoparticles entrapping a lipophilic drug model, coumarin-6, by using a microfluidic system was assessed in this study. The influence of PEG density and chain length on zein nanoparticle characteristics, as well as their uptake efficacy in melanoma cancer cells, was also evaluated. Methods: Zein nanoparticles were prepared by both manual and microfluidic approaches to allow comparison between the two processes. PEGylated zein nanoparticles with various PEG densities and chain lengths were produced by nanoprecipitation and characterized. Their cellular uptake was evaluated on B16F10 melanoma cancer cells in vitro. Results: Zein nanoparticles have successfully been produced by both manual and microfluidic approaches. Parameters such as total flow rate and flow rate ratio of the aqueous and organic phases in microfluidic process, as well as the method preparation and aqueous to organic phase volume ratio during nanoprecipitation, have been shown to strongly influence the characteristics of the resulting nanoparticles. Continuous microfluidics led to the production of nanoparticles with low yield and drug entrapment, unlike nanoprecipitation, which resulted in zein nanoparticles with an appropriate size and an optimal drug entrapment efficiency of 64%. The surface modification of the nanoparticles produced by nanoprecipitation, with lower PEG density and shorter PEG chain length made mPEG5K-zein (0.5:1) the most favorable formulation in our study, resulting in enhanced stability and higher coumarin-6 uptake by melanoma cancer cells. Conclusion: mPEG5K-zein (0.5:1) nanoparticles prepared by nanoprecipitation were the most promising formulation in our study, exhibiting increased stability and enhancing coumarin-6 uptake by melanoma cancer cells.


Assuntos
Melanoma , Nanopartículas , Zeína , Cumarínicos , Humanos , Melanoma/tratamento farmacológico , Microfluídica , Reprodutibilidade dos Testes
18.
Pharmaceutics ; 14(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432660

RESUMO

Lipidic nanoparticles (LNP), particularly liposomes, have been proven to be a successful and versatile platform for intracellular drug delivery for decades. Whilst primarily developed for small molecule delivery, liposomes have recently undergone a renaissance due to their success in vaccination strategies, delivering nucleic acids, in the COVID-19 pandemic. As such, liposomes are increasingly being investigated for the delivery of nucleic acids, beyond mRNA, as non-viral gene delivery vectors. Although not generally considered toxic, liposomes are increasingly shown to not be immunologically inert, which may have advantages in vaccine applications but may limit their use in other conditions where immunological responses may lead to adverse events, particularly those associated with complement activation. We sought to assess a small panel of liposomes varying in a number of physico-chemical characteristics associated with complement activation and inflammatory responses, and examine how basophil-like cells may respond to them. Basophils, as well as other cell types, are involved in the anaphylactic responses to liposomes but are difficult to isolate in sufficient numbers to conduct large scale analysis. Here, we report the use of the human KU812 cell line as a surrogate for primary basophils. Multiple phenotypic markers of activation were assessed, as well as the release of histamine and inflammasome activity within the cells. We found that larger liposomes were more likely to result in KU812 activation, and that non-PEGylated liposomes were potent stimulators of inflammasome activity (four-fold greater IL-1ß secretion than untreated controls), and a lower ratio of cholesterol to lipid was also associated with greater IL-1ß secretion ([Cholesterol:DSPC ratio] 1:10; 0.35 pg/mL IL-1ß vs. 5:10; 0.1 pg/mL). Additionally, PEGylation appeared to be associated with direct KU812 activation. These results suggest possible mechanisms related to the consequences of complement activation that may be underpinned by basophilic cells, in addition to other immune cell types. Investigation of the mechanisms behind these responses, and their impact on use in vivo, are now warranted.

19.
J Control Release ; 342: 388-399, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896446

RESUMO

The efficacy of RNA-based vaccines has been recently demonstrated, leading to the use of mRNA-based COVID-19 vaccines. The application of self-amplifying mRNA within these formulations may offer further enhancement to these vaccines, as self-amplifying mRNA replicons enable longer expression kinetics and more potent immune responses compared to non-amplifying mRNAs. To investigate the impact of administration route on RNA-vaccine potency, we investigated the immunogenicity of a self-amplifying mRNA encoding the rabies virus glycoprotein encapsulated in different nanoparticle platforms (solid lipid nanoparticles (SLNs), polymeric nanoparticles (PNPs) and lipid nanoparticles (LNPs)). These were administered via three different routes: intramuscular, intradermal and intranasal. Our studies in a mouse model show that the immunogenicity of our 4 different saRNA vaccine formulations after intramuscular or intradermal administration was initially comparable; however, ionizable LNPs gave higher long-term IgG responses. The clearance of all 4 of the nanoparticle formulations from the intramuscular or intradermal administration site was similar. In contrast, immune responses generated after intranasal was low and coupled with rapid clearance for the administration site, irrespective of the formulation. These results demonstrate that both the administration route and delivery system format dictate self-amplifying RNA vaccine efficacy.


Assuntos
COVID-19 , Nanopartículas , Animais , Vacinas contra COVID-19 , Humanos , Lipossomos , Camundongos , RNA Mensageiro , SARS-CoV-2 , Potência de Vacina , Vacinas Sintéticas , Vacinas de mRNA
20.
Mol Pharm ; 8(1): 153-61, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21117621

RESUMO

The immunostimulatory capacities of cationic liposomes are well-documented and are attributed both to inherent immunogenicity of the cationic lipid and more physical capacities such as the formation of antigen depots and antigen delivery. Very few studies have however been conducted comparing the immunostimulatory capacities of different cationic lipids. In the present study we therefore chose to investigate three of the most well-known cationic liposome-forming lipids as potential adjuvants for protein subunit vaccines. The ability of 3ß-[N-(N',N'-dimethylaminoethane)carbomyl] cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), and dimethyldioctadecylammonium (DDA) liposomes incorporating immunomodulating trehalose dibehenate (TDB) to form an antigen depot at the site of injection (SOI) and to induce immunological recall responses against coadministered tuberculosis vaccine antigen Ag85B-ESAT-6 are reported. Furthermore, physical characterization of the liposomes is presented. Our results suggest that liposome composition plays an important role in vaccine retention at the SOI and the ability to enable the immune system to induce a vaccine specific recall response. While all three cationic liposomes facilitated increased antigen presentation by antigen presenting cells, the monocyte infiltration to the SOI and the production of IFN-γ upon antigen recall was markedly higher for DDA and DC-Chol based liposomes which exhibited a longer retention profile at the SOI. A long-term retention and slow release of liposome and vaccine antigen from the injection site hence appears to favor a stronger Th1 immune response.


Assuntos
Colesterol/análogos & derivados , Ácidos Graxos Monoinsaturados/química , Lipossomos/química , Compostos de Amônio Quaternário/química , Vacinas/química , Vacinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Apresentação de Antígeno , Colesterol/química , Feminino , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa