Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Eur J Neurosci ; 59(6): 1278-1295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052454

RESUMO

Astrocytes, the most abundant glial cells in the central nervous system, respond to a wide variety of neurotransmitters binding to metabotropic receptors. Here, we investigated the intracellular calcium responses of spinal cord astrocytes to dopamine and noradrenaline, two catecholamines released by specific descending pathways. In a slice preparation from the spinal cord of neonatal mice, puff application of dopamine resulted in intracellular calcium responses that remained in the endfeet. Noradrenaline induced stronger responses that also started in the endfeet but spread to neighbouring compartments. The intracellular calcium responses were unaffected by blocking neuronal activity or inhibiting various neurotransmitter receptors, suggesting a direct effect of dopamine and noradrenaline on astrocytes. The intracellular calcium responses induced by noradrenaline and dopamine were inhibited by the D1 receptor antagonist SCH 23390. We assessed the functional consequences of these astrocytic responses by examining changes in arteriole diameter. Puff application of dopamine or noradrenaline resulted in vasoconstriction of spinal arterioles. However, blocking D1 receptors or manipulating astrocytic intracellular calcium levels did not abolish the vasoconstrictions, indicating that the observed intracellular calcium responses in astrocyte endfeet were not responsible for the vascular changes. Our findings demonstrate a compartmentalized response of spinal cord astrocytes to catecholamines and expand our understanding of astrocyte-neurotransmitter interactions and their potential roles in the physiology of the central nervous system.


Assuntos
Dopamina , Norepinefrina , Camundongos , Animais , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Dopamina/metabolismo , Astrócitos/metabolismo , Cálcio/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacologia
2.
EMBO J ; 39(18): e105759, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32744742

RESUMO

Parvalbumin-positive (PV+ ) fast-spiking interneurons are essential to control the firing activity of principal neuron ensembles, thereby regulating cognitive processes. The high firing frequency activity of PV+ interneurons imposes high-energy demands on their metabolism that must be supplied by distinctive machinery for energy generation. Exploring single-cell transcriptomic data for the mouse cortex, we identified a metabolism-associated gene with highly restricted expression to PV+ interneurons: Cox6a2, which codes for an isoform of a cytochrome c oxidase subunit. Cox6a2 deletion in mice disrupts perineuronal nets and enhances oxidative stress in PV+ interneurons, which in turn impairs the maturation of their morphological and functional properties. Such dramatic effects were likely due to an essential role of COX6A2 in energy balance of PV+ interneurons, underscored by a decrease in the ATP-to-ADP ratio in Cox6a2-/- PV+ interneurons. Energy disbalance and aberrant maturation likely hinder the integration of PV+ interneurons into cortical neuronal circuits, leading to behavioral alterations in mice. Additionally, in a human patient bearing mutations in COX6A2, we found a potential association of the mutations with mental/neurological abnormalities.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Interneurônios/enzimologia , Proteínas Musculares/metabolismo , Estresse Oxidativo , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Idoso , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Musculares/genética
3.
Mol Psychiatry ; 26(10): 6083-6099, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34234281

RESUMO

Familial Parkinson disease (PD) is associated with rare genetic mutations, but the etiology in most patients with sporadic (s)PD is largely unknown, and the basis for its progression to dementia (sPDD) is poorly characterized. We have identified that loss of IFNß or IFNAR1, the receptor for IFNα/ß, causes pathological and behavioral changes resembling PDD, prompting us to hypothesize that dysregulated genes in IFNß-IFNAR signaling pathway predispose one to sPD. By transcriptomic analysis, we found defective neuronal IFNß-IFNAR signaling, including particularly elevated PIAS2 associated with sPDD. With meta-analysis of GWASs, we identified sequence variants in IFNß-IFNAR-related genes in sPD patients. Furthermore, sPDD patients expressed higher levels of PIAS2 mRNA and protein in neurons. To determine its function in brain, we overexpressed PIAS2 under a neuronal promoter, alone or with human α-synuclein, in the brains of mice, which caused motor and cognitive impairments and correlated with intraneuronal phosphorylated (p)α-synuclein accumulation and dopaminergic neuron loss. Ectopic expression of neuronal PIAS2 blocked mitophagy, increased the accumulation of senescent mitochondrial and oxidative stress, as evidenced by excessive oxDJ1 and 8OHdG, by inactivating ERK1/2-P53 signaling. Conversely, PIAS2 knockdown rescued the clinicopathological manifestations of PDD in Ifnb-/- mice on restoring mitochondrial homeostasis, oxidative stress, and pERK1/2-pP53 signaling. The regulation of JAK-STAT2-PIAS2 signaling was crucial for neurite outgrowth and neuronal survival and excitability and thus might prevent cognitive impairments. Our findings provide insights into the progression of sPD and dementia and have implications for new therapeutic approaches.


Assuntos
Demência , Interferon beta/metabolismo , Doença de Parkinson , Proteínas Inibidoras de STAT Ativados , Transdução de Sinais , Animais , Demência/genética , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Degeneração Neural , Doença de Parkinson/genética , Proteínas Inibidoras de STAT Ativados/genética , alfa-Sinucleína/metabolismo
4.
J Neurophysiol ; 122(3): 970-974, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291169

RESUMO

Tremor is a common symptom for the most prevalent neurological disorders, including essential tremor, spinal cord injury, multiple sclerosis, or Parkinson's disease. Despite the devastating effects of tremor on life quality, available treatments are few and unspecific. Because of the need for specific and costly devices, tremor is rarely quantified by laboratories studying motor control without a genuine interest in trembling. We present a simple, reliable, and affordable method aimed at monitoring tremor in rodents, with an accuracy comparable to that of expensive, commercially available equipment. We took advantage of the accelerometer integrated in modern mobile phones working with operating systems capable of running downloaded apps. By fixing a smartphone to a cage suspended by rubber bands, we were able to detect faint vibrations of the cage. With a mouse in the cage, we showed that the acceleration signals on two horizontal axes were sufficient for the detection of physiological tremor and harmaline-induced tremor. We discuss the advantages and limitations of our method.NEW & NOTEWORTHY The majority of patients suffering from neurological disorders suffer from tremor that severely disrupts their life quality. Because of the high cost of specific scientific equipment, tremor is rarely quantified by laboratories working on motor behavior. For this reason, the potential anti-tremor effect of most compounds tested in animals remains unknown. We describe an affordable technique that will allow any laboratory to measure tremor accurately with a smartphone.


Assuntos
Acelerometria/instrumentação , Tremor Essencial/diagnóstico , Smartphone/instrumentação , Acelerometria/métodos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Tremor Essencial/induzido quimicamente , Feminino , Harmalina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
J Physiol ; 596(20): 4983-4994, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30079574

RESUMO

KEY POINTS: GABA is an essential molecule for sensory information processing. It is usually assumed to be released by neurons. Here we show that in the dorsal horn of the spinal cord, astrocytes respond to glutamate by releasing GABA. Our findings suggest a novel role for astrocytes in somatosensory information processing. ABSTRACT: Astrocytes participate in neuronal signalling by releasing gliotransmitters in response to neurotransmitters. We investigated if astrocytes from the dorsal horn of the spinal cord of adult red-eared turtles (Trachemys scripta elegans) release GABA in response to glutamatergic receptor activation. For this, we developed a GABA sensor consisting of HEK cells expressing GABAA receptors. By positioning the sensor recorded in the whole-cell patch-clamp configuration within the dorsal horn of a spinal cord slice, we could detect GABA in the extracellular space. Puff application of glutamate induced GABA release events with time courses that exceeded the duration of inhibitory postsynaptic currents by one order of magnitude. Because the events were neither affected by extracellular addition of nickel, cadmium and tetrodotoxin nor by removal of Ca2+ , we concluded that they originated from non-neuronal cells. Immunohistochemical staining allowed the detection of GABA in a fraction of dorsal horn astrocytes. The selective stimulation of A∂ and C fibres in a dorsal root filament induced a Ca2+ increase in astrocytes loaded with Oregon Green BAPTA. Finally, chelating Ca2+ in a single astrocyte was sufficient to prevent the GABA release evoked by glutamate. Our results indicate that glutamate triggers the release of GABA from dorsal horn astrocytes with a time course compatible with the integration of sensory inputs.


Assuntos
Astrócitos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Potenciais Sinápticos , Ácido gama-Aminobutírico/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Corno Dorsal da Medula Espinal/citologia , Corno Dorsal da Medula Espinal/fisiologia , Tartarugas
6.
J Neurosci ; 36(7): 2261-6, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888935

RESUMO

The voltage-gated K(+) channels Kv7.2 and Kv7.3 are located at the axon initial segment (AIS) and exert strong control over action potential generation. Therefore, changes in their localization or cell surface numbers are likely to influence neuronal signaling. However, nothing is known about the cell surface dynamics of Kv7.2/7.3 at steady state or during short-term neuronal stimulation. This is primarily attributable to their membrane topology, which hampers extracellular epitope tagging. Here we circumvent this limitation by fusing an extra phluorin-tagged helix to the N terminus of human Kv7.3. This seven transmembrane chimera, named super ecliptic phluorin (SEP)-TAC-7.3, functions and traffics as a wild-type (WT) channel. We expressed SEP-TAC-7.3 in dissociated rat hippocampal neurons to examine the lateral mobility, surface numbers, and localization of AIS Kv7.2/7.3 heteromers using live imaging. We discovered that they are extraordinarily stable and exhibit a very low surface mobility both during steady state and neuronal stimulation. In the latter case, we also found that neither localization nor cell surface numbers were changed. However, at high glutamate loads, we observed a rapid irreversible endocytosis of Kv7.2/7.3, which required the activation of NR2B-containing NMDA receptors, Ca(2+) influx, and calpain activation. This excitotoxic mechanism may be specific to ankyrin G-bound AIS proteins because Nav1.2 channels, but not AIS GABAA receptors, were also endocytosed. In conclusion, we have, for the first time, characterized the cell surface dynamics of a full-length Kv7 channel using a novel chimeric strategy. This approach is likely also applicable to other Kv channels and thus of value for the additional characterization of this ion channel subfamily. SIGNIFICANCE STATEMENT: The voltage-gated K(+) channels Kv7.2 and Kv7.3 exert strong control over action potential generation, but little is known about their cell surface dynamics. Using a novel phluorin-based approach, we here show that these channels are highly stable at steady state and different types of neuronal stimulation. However, at high glutamate loads, they undergo a rapid calpain-dependent endocytosis that likely represents an early response during excitotoxic states.


Assuntos
Axônios/metabolismo , Calpaína/metabolismo , Regulação para Baixo/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Anquirinas/genética , Axônios/ultraestrutura , Sinalização do Cálcio/genética , Quimera/genética , Feminino , Humanos , Canal de Potássio KCNQ2/ultraestrutura , Canal de Potássio KCNQ3/ultraestrutura , Masculino , Camundongos , Proteínas do Tecido Nervoso/ultraestrutura , Técnicas de Patch-Clamp , Gravidez , Ratos , Receptores de Superfície Celular/metabolismo , Receptores de GABA-A/genética , Receptores de N-Metil-D-Aspartato/genética
7.
J Physiol ; 595(5): 1763-1773, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859267

RESUMO

KEY POINTS: In the adult turtle spinal cord, action potential generation in motoneurones is inhibited by spillover of serotonin to extrasynaptic serotonin 1A (5-HT1A ) receptors at the axon initial segment. We explored whether ingestion of the 5-HT1A receptor partial agonist, buspirone, decreases motoneurone excitability in humans. Following ingestion of buspirone, two tests of motoneurone excitability showed decreases. F-wave areas and persistence in an intrinsic muscle of the hand were reduced, as was the area of cervicomedullary motor evoked potentials in biceps brachii. Our findings suggest that activation of 5-HT1A receptors depresses human motoneurone excitability. Such a depression could contribute to decreased motoneurone output during fatiguing exercise if there is high serotonergic drive to the motoneurones. ABSTRACT: Intense serotonergic drive in the turtle spinal cord results in serotonin spillover to the axon initial segment of the motoneurones where it activates serotonin 1A (5-HT1A ) receptors and inhibits generation of action potentials. We examined whether activation of 5-HT1A receptors decreases motoneurone excitability in humans by determining the effects of a 5-HT1A receptor partial agonist, buspirone, on F waves and cervicomedullary motor evoked potentials (CMEPs). In a placebo-controlled double-blind study, 10 participants were tested on two occasions where either placebo or 20 mg of buspirone was administered orally. The ulnar nerve was stimulated supramaximally to evoke F waves in abductor digiti minimi (ADM). CMEPs and the maximal M wave were elicited in biceps brachii by cervicomedullary stimulation and brachial plexus stimulation, respectively. Following buspirone intake, F-wave area and persistence, as well as CMEP area, were significantly decreased. The mean post-pill difference in normalized F-wave areas and persistence between buspirone and placebo days was -27% (-42, -12; 95% confidence interval) and -9% (-16, -2), respectively. The mean post-pill difference in normalized CMEP area between buspirone and placebo days showed greater variation and was -31% (-60, -2). In conclusion, buspirone reduces motoneurone excitability in humans probably via activation of 5-HT1A receptors at the axon initial segment. This has implications for motor output during high drive to the motoneurones when serotonin may spill over to these inhibitory receptors and consequently inhibit motoneurone output. Such a mechanism could potentially contribute to fatigue with exercise.


Assuntos
Buspirona/farmacologia , Neurônios Motores/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/fisiologia , Agonistas do Receptor de Serotonina/farmacologia , Adulto , Método Duplo-Cego , Estimulação Elétrica , Eletromiografia , Potencial Evocado Motor/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Nervo Ulnar/efeitos dos fármacos , Nervo Ulnar/fisiologia , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 110(12): 4774-9, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487756

RESUMO

Motor fatigue induced by physical activity is an everyday experience characterized by a decreased capacity to generate motor force. Factors in both muscles and the central nervous system are involved. The central component of fatigue modulates the ability of motoneurons to activate muscle adequately independently of the muscle physiology. Indirect evidence indicates that central fatigue is caused by serotonin (5-HT), but the cellular mechanisms are unknown. In a slice preparation from the spinal cord of the adult turtle, we found that prolonged stimulation of the raphe-spinal pathway--as during motor exercise--activated 5-HT1A receptors that decreased motoneuronal excitability. Electrophysiological tests combined with pharmacology showed that focal activation of 5-HT1A receptors at the axon initial segment (AIS), but not on other motoneuronal compartments, inhibited the action potential initiation by modulating a Na(+) current. Immunohistochemical staining against 5-HT revealed a high-density innervation of 5-HT terminals on the somatodendritic membrane and a complete absence on the AIS. This observation raised the hypothesis that a 5-HT spillover activates receptors at this latter compartment. We tested it by measuring the level of extracellular 5-HT with cyclic voltammetry and found that prolonged stimulations of the raphe-spinal pathway increased the level of 5-HT to a concentration sufficient to activate 5-HT1A receptors. Together our results demonstrate that prolonged release of 5-HT during motor activity spills over from its release sites to the AIS of motoneurons. Here, activated 5-HT1A receptors inhibit firing and, thereby, muscle contraction. Hence, this is a cellular mechanism for central fatigue.


Assuntos
Potenciais de Ação/fisiologia , Fadiga/metabolismo , Neurônios Motores/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/metabolismo , Tartarugas/fisiologia , Animais , Axônios/metabolismo , Membrana Celular/metabolismo , Potenciais da Membrana/fisiologia , Neurônios Motores/citologia , Contração Muscular/fisiologia , Sódio/metabolismo
9.
10.
STAR Protoc ; 5(2): 102954, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38492227

RESUMO

Here, we present a protocol for quantifying pyramidal neuron hyperexcitability in a mouse model of STXBP1 neurodevelopmental encephalopathy (Stxbp1hap). We describe steps for preparing brain slices, positioning electrodes, and performing an excitability test to investigate microcircuit failures. This protocol is based on recording layer 2/3 cortical pyramidal neurons in response to stimulation of two independent sets of excitatory axons that recruit feedforward inhibition microcircuits. For complete details on the use and execution of this protocol, please refer to Dos Santos et al.1.


Assuntos
Modelos Animais de Doenças , Células Piramidais , Animais , Camundongos , Transtornos do Neurodesenvolvimento/fisiopatologia
11.
Cell Rep Med ; 4(12): 101308, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38086378

RESUMO

De novo mutations in STXBP1 are among the most prevalent causes of neurodevelopmental disorders and lead to haploinsufficiency, cortical hyperexcitability, epilepsy, and other symptoms in people with mutations. Given that Munc18-1, the protein encoded by STXBP1, is essential for excitatory and inhibitory synaptic transmission, it is currently not understood why mutations cause hyperexcitability. We find that overall inhibition in canonical feedforward microcircuits is defective in a P15-22 mouse model for Stxbp1 haploinsufficiency. Unexpectedly, we find that inhibitory synapses formed by parvalbumin-positive interneurons were largely unaffected. Instead, excitatory synapses fail to recruit inhibitory interneurons. Modeling confirms that defects in the recruitment of inhibitory neurons cause hyperexcitation. CX516, an ampakine that enhances excitatory synapses, restores interneuron recruitment and prevents hyperexcitability. These findings establish deficits in excitatory synapses in microcircuits as a key underlying mechanism for cortical hyperexcitability in a mouse model of Stxbp1 disorder and identify compounds enhancing excitation as a direction for therapy.


Assuntos
Encefalopatias , Animais , Humanos , Camundongos , Encefalopatias/genética , Encefalopatias/metabolismo , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutação , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/genética
12.
Sci Rep ; 13(1): 12407, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524855

RESUMO

Quantum sensors using solid state qubits have demonstrated outstanding sensitivity, beyond that possible using classical devices. In particular, those based on colour centres in diamond have demonstrated high sensitivity to magnetic field through exploiting the field-dependent emission of fluorescence under coherent control using microwaves. Given the highly biocompatible nature of diamond, sensing from biological samples is a key interdisciplinary application. In particular, the microscopic-scale study of living systems can be possible through recording of temperature and biomagnetic field. In this work, we use such a quantum sensor to demonstrate such microscopic-scale recording of electrical activity from neurons in fragile living brain tissue. By recording weak magnetic field induced by ionic currents in mouse corpus callosum axons, we accurately recover signals from neuronal action potential propagation while demonstrating in situ pharmacology. Our sensor allows recording of the electrical activity in neural circuits, disruption of which can shed light on the mechanisms of disease emergence. Unlike existing techniques for recording activity, which can require potentially damaging direct interaction, our sensing is entirely passive and remote from the sample. Our results open a promising new avenue for the microscopic recording of neuronal signals, offering the eventual prospect of microscopic imaging of electrical activity in the living mammalian brain.


Assuntos
Encéfalo , Diamante , Animais , Camundongos , Encéfalo/fisiologia , Campos Magnéticos , Neurônios/fisiologia , Fluorescência , Mamíferos
13.
Physiol Rep ; 9(18): e15029, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34558208

RESUMO

Rhythmic motor activities such as breathing, locomotion, tremor, or mastication are organized by groups of interconnected neurons. Most synapses in the central nervous system are in close apposition with processes belonging to astrocytes. Neurotransmitters released from neurons bind to receptors expressed by astrocytes, activating a signaling pathway that leads to an increase in calcium concentration and the release of gliotransmitters that eventually modulate synaptic transmission. It is therefore likely that the activation of astrocytes impacts motor control. Here we review recent studies demonstrating that astrocytes inhibit, modulate, or trigger motor rhythmic behaviors.


Assuntos
Astrócitos/fisiologia , Atividade Motora , Animais , Astrócitos/metabolismo , Vias Eferentes/citologia , Vias Eferentes/fisiologia , Humanos , Locomoção , Mastigação , Respiração
14.
Front Neurosci ; 15: 643614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054404

RESUMO

Magnetometry based on nitrogen-vacancy (NV) centers in diamond is a novel technique capable of measuring magnetic fields with high sensitivity and high spatial resolution. With the further advancements of these sensors, they may open up novel approaches for the 2D imaging of neural signals in vitro. In the present study, we investigate the feasibility of NV-based imaging by numerically simulating the magnetic signal from the auditory pathway of a rodent brainstem slice (ventral cochlear nucleus, VCN, to the medial trapezoid body, MNTB) as stimulated by both electric and optic stimulation. The resulting signal from these two stimulation methods are evaluated and compared. A realistic pathway model was created based on published data of the neural morphologies and channel dynamics of the globular bushy cells in the VCN and their axonal projections to the principal cells in the MNTB. The pathway dynamics in response to optic and electric stimulation and the emitted magnetic fields were estimated using the cable equation. For simulating the optic stimulation, the light distribution in brain tissue was numerically estimated and used to model the optogenetic neural excitation based on a four state channelrhodopsin-2 (ChR2) model. The corresponding heating was also estimated, using the bio-heat equation and was found to be low (<2°C) even at excessively strong optic signals. A peak magnetic field strength of ∼0.5 and ∼0.1 nT was calculated from the auditory brainstem pathway after electrical and optical stimulation, respectively. By increasing the stimulating light intensity four-fold (far exceeding commonly used intensities) the peak magnetic signal strength only increased to 0.2 nT. Thus, while optogenetic stimulation would be favorable to avoid artefacts in the recordings, electric stimulation achieves higher peak fields. The present simulation study predicts that high-resolution magnetic imaging of the action potentials traveling along the auditory brainstem pathway will only be possible for next generation NV sensors. However, the existing sensors already have sufficient sensitivity to support the magnetic sensing of cumulated neural signals sampled from larger parts of the pathway, which might be a promising intermediate step toward further maturing this novel technology.

15.
Nat Neurosci ; 24(5): 658-666, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737752

RESUMO

Cannabinoids reduce tremor associated with motor disorders induced by injuries and neurodegenerative disease. Here we show that this effect is mediated by cannabinoid receptors on astrocytes in the ventral horn of the spinal cord, where alternating limb movements are initiated. We first demonstrate that tremor is reduced in a mouse model of essential tremor after intrathecal injection of the cannabinoid analog WIN55,212-2. We investigate the underlying mechanism using electrophysiological recordings in spinal cord slices and show that endocannabinoids released from depolarized interneurons activate astrocytic cannabinoid receptors, causing an increase in intracellular Ca2+, subsequent release of purines and inhibition of excitatory neurotransmission. Finally, we show that the anti-tremor action of WIN55,212-2 in the spinal cords of mice is suppressed after knocking out CB1 receptors in astrocytes. Our data suggest that cannabinoids reduce tremor via their action on spinal astrocytes.


Assuntos
Astrócitos/metabolismo , Tremor Essencial/metabolismo , Interneurônios/metabolismo , Receptores de Canabinoides/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Modelos Animais de Doenças , Interneurônios/efeitos dos fármacos , Camundongos , Morfolinas/farmacologia , Naftalenos/farmacologia , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
16.
Sci Rep ; 11(1): 2412, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510264

RESUMO

The ability to perform noninvasive and non-contact measurements of electric signals produced by action potentials is essential in biomedicine. A key method to do this is to remotely sense signals by the magnetic field they induce. Existing methods for magnetic field sensing of mammalian tissue, used in techniques such as magnetoencephalography of the brain, require cryogenically cooled superconducting detectors. These have many disadvantages in terms of high cost, flexibility and limited portability as well as poor spatial and temporal resolution. In this work we demonstrate an alternative technique for detecting magnetic fields generated by the current from action potentials in living tissue using nitrogen vacancy centres in diamond. With 50 pT/[Formula: see text] sensitivity, we show the first measurements of magnetic sensing from mammalian tissue with a diamond sensor using mouse muscle optogenetically activated with blue light. We show these proof of principle measurements can be performed in an ordinary, unshielded lab environment and that the signal can be easily recovered by digital signal processing techniques. Although as yet uncompetitive with probe electrophysiology in terms of sensitivity, we demonstrate the feasibility of sensing action potentials via magnetic field in mammals using a diamond quantum sensor, as a step towards microscopic imaging of electrical activity in a biological sample using nitrogen vacancy centres in diamond.


Assuntos
Técnicas Biossensoriais , Diamante , Fenômenos Eletrofisiológicos , Músculos/fisiologia , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Campos Magnéticos , Razão Sinal-Ruído
17.
Artigo em Inglês | MEDLINE | ID: mdl-30529002

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a psychiatric disorder characterized by inattention, aberrant impulsivity, and hyperactivity. Although the underlying pathophysiology of ADHD remains unclear, dopamine and norepinephrine signaling originating from the ventral tegmental area (VTA) and locus coeruleus (LC) is thought to be critically involved. In this study, we employ Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) together with the mouse 5-Choice Serial Reaction Time Task (5-CSRTT) to investigate the necessary roles of these catecholamines in ADHD-related behaviors, including attention, impulsivity, and motivation. By selective inhibition of tyrosine hydroxylase (TH)-positive VTA dopamine neurons expressing the Gi-coupled DREADD (hM4Di), we observed a marked impairment of effort-based motivation and subsequently speed and overall vigor of responding. At the highest clozapine N-oxide (CNO) dose tested (i.e. 2 mg/kg) to activate hM4Di, we detected a reduction in locomotor activity. DREADD-mediated inhibition of LC norepinephrine neurons reduced attentional performance in a variable stimulus duration test designed to increase task difficulty, specifically by increasing trials omissions, reducing mean score, and visual processing speed. These findings show that VTA dopamine and LC norepinephrine neurons differentially affect attention, impulsive and motivational control. In addition, this study highlights how molecular genetic probing of selective catecholamine circuits can provide valuable insights into the mechanisms underlying ADHD-relevant behaviors.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Norepinefrina/metabolismo , Animais , Atenção/efeitos dos fármacos , Atenção/fisiologia , Técnicas Genéticas , Comportamento Impulsivo/efeitos dos fármacos , Comportamento Impulsivo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Motivação/efeitos dos fármacos , Motivação/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Testes Neuropsicológicos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
18.
J Neuroendocrinol ; 31(7): e12761, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31237372

RESUMO

Dopamine-producing tyrosine hydroxylase (TH) neurones in the hypothalamic arcuate nucleus (ARC) have recently been shown to be involved in ghrelin signalling and body weight homeostasis. In the present study, we investigate the role of the intracellular regulator RhoA in hypothalamic TH neurones in response to peripheral hormones. Diet-induced obesity was found to be associated with increased phosphorylation of TH in ARC, indicating obesity-associated increased activity of ARC TH neurones. Mice in which RhoA was specifically knocked out in TH neurones (TH-RhoA-/- mice) were more sensitive to the orexigenic effect of peripherally administered ghrelin and displayed an abolished response to the anorexigenic hormone leptin. When TH-RhoA-/- mice were challenged with a high-fat high-sucrose (HFHS) diet, they became hyperphagic and gained more body weight and fat mass compared to wild-type control mice. Importantly, lack of RhoA prevented development of ghrelin resistance, which is normally observed in wild-type mice after long-term HFHS diet feeding. Patch-clamp electrophysiological analysis demonstrated increased ghrelin-induced excitability of TH neurones in lean TH-RhoA-/- mice compared to lean littermate control animals. Additionally, increased expression of the orexigenic hypothalamic neuropeptides agouti-related peptide and neuropeptide Y was observed in TH-RhoA-/- mice. Overall, our data indicate that TH neurones in ARC are important for the regulation of body weight homeostasis and that RhoA is both a central effector in these neurones and important for the development of obesity-induced ghrelin resistance. The obese phenotype of TH-RhoA-/- mice may be a result of increased sensitivity to ghrelin and decreased sensitivity to leptin, resulting in increased food intake.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Ingestão de Alimentos , Grelina/metabolismo , Neurônios/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Feminino , Expressão Gênica , Masculino , Camundongos Knockout , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Proteína rhoA de Ligação ao GTP/genética
19.
J Physiol ; 586(5): 1233-8, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18096602

RESUMO

This report considers serotonergic (5-HT) effects on spinal motoneurons, reviewing previous data and presenting a new study showing distinct effects of two 5-HT receptor subtypes. We previously investigated the effects of 5-HT on motoneurons in a slice preparation from the spinal cord of the adult turtle. In agreement with previous studies, we had found that 5-HT applied to the extracellular medium promoted a voltage sensitive plateau potential. However, we also reported that this effect was only observed in half of the motoneurons; 5-HT inhibited the firing of the other half of the motoneurons recorded from. To investigate the reasons for this, we applied 5-HT focally by means of the microiontophoresis technique. Facilitation of plateau potentials was observed when 5-HT was released at sites throughout the somatodendritic region. However, motoneurons were inhibited by 5-HT when selectively applied in the perisomatic region. These two effects could be induced in the same motoneuron. With pharmacological tools, we demonstrate here that the facilitation of plateau potentials is mediated by 5-HT(2) receptors and the inhibitory effect is due to the activation of 5-HT(1A/7) receptors.


Assuntos
Neurônios Motores/metabolismo , Serotonina/metabolismo , Medula Espinal/metabolismo , Potenciais de Ação/fisiologia , Animais , Contração Muscular/fisiologia , Músculo Esquelético/inervação , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Medula Espinal/citologia , Sinapses/metabolismo , Tartarugas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa