Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Parasitology ; 145(8): 1020-1026, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29229008

RESUMO

The round goby, Neogobius melanostomus, is a Ponto-Caspian fish considered as an invasive species in a wide range of aquatic ecosystems. To understand the role that parasites may play in its successful invasion across Western Europe, we investigated the parasitic diversity of the round goby along its invasion corridor, from the Danube to the Upper Rhine rivers, using data from literature and a molecular barcoding approach, respectively. Among 1666 parasites extracted from 179 gobies of the Upper Rhine, all of the 248 parasites barcoded on the c oxidase subunit I gene were identified as Pomphorhynchus laevis. This lack of macroparasite diversity was interpreted as a loss of parasites along its invasion corridor without spillback compensation. The genetic diversity of P. laevis was represented by 33 haplotypes corresponding to a haplotype diversity of 0·65 ± 0·032, but a weak nucleotide diversity of 0·0018 ± 0·00015. Eight of these haplotypes were found in 88·4% of the 248 parasites. These haplotypes belong to a single lineage so far restricted to the Danube, Vistula and Volga rivers (Eastern Europe). This result underlines the exotic status of this Ponto-Caspian lineage in the Upper Rhine, putatively disseminated by the round goby along its invasion corridor.


Assuntos
Acantocéfalos/genética , Variação Genética , Helmintíase Animal/epidemiologia , Perciformes/parasitologia , Rios/parasitologia , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa Oriental/epidemiologia , França/epidemiologia , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Espécies Introduzidas , Filogenia
2.
Proc Biol Sci ; 281(1796): 20141915, 2014 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-25339729

RESUMO

Manipulative parasites often alter the phenotype of their hosts along multiple dimensions. 'Multidimensionality' in host manipulation could consist in the simultaneous alteration of several physiological pathways independently of one another, or proceed from the disruption of some key physiological parameter, followed by a cascade of effects. We compared multidimensionality in 'host manipulation' between two closely related amphipods, Gammarus fossarum and Gammarus pulex, naturally and experimentally infected with Pomphorhynchus laevis (Acanthocephala), respectively. To that end, we calculated in each host-parasite association the effect size of the difference between infected and uninfected individuals for six different traits (activity, phototaxis, geotaxis, attraction to conspecifics, refuge use and metabolic rate). The effects sizes were highly correlated between host-parasite associations, providing evidence for a relatively constant 'infection syndrome'. Using the same methodology, we compared the extent of phenotypic alterations induced by an experimental injection of serotonin (5-HT) in uninfected G. pulex to that induced by experimental or natural infection with P. laevis. We observed a significant correlation between effect sizes across the six traits, indicating that injection with 5-HT can faithfully mimic the 'infection syndrome'. This is, to our knowledge, the first experimental evidence that multidimensionality in host manipulation can proceed, at least partly, from the disruption of some major physiological mechanism.


Assuntos
Acantocéfalos/fisiologia , Anfípodes/parasitologia , Interações Hospedeiro-Parasita , Agonistas do Receptor de Serotonina/farmacologia , Serotonina/farmacologia , Acantocéfalos/efeitos dos fármacos , Anfípodes/fisiologia , Animais , Fenótipo
3.
J Exp Biol ; 216(Pt 1): 134-41, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23225876

RESUMO

Studies addressing the functional basis of parasitic manipulation suggest that alteration of the neuromodulatory system is a common feature of manipulated hosts. Screening of the neuromodulatory system has so far been carried out by performing ethopharmacological analysis, biochemical quantification of neurotransmitters and neuromodulators, and/or immunocytochemistry. Here, we review the advantages and limitations of such approaches through the analysis of case studies. We further address whether the analysis of candidate neuromodulatory systems fits the current view of manipulation as being multidimensional. The benefits in combining ethopharmacology with more recent molecular tools to investigate candidate neuromodulatory pathways is also emphasized. We conclude by discussing the value of a multidisciplinary study of parasitic manipulation, combining evolutionary (parasite transmission), behavioural (syndrome of manipulation) and neuroimmunological approaches.


Assuntos
Interações Hospedeiro-Parasita , Parasitos/fisiologia , Animais , Comportamento , Evolução Biológica , Humanos , Neuroimunomodulação , Psiconeuroimunologia
4.
J Exp Biol ; 216(Pt 1): 27-35, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23225864

RESUMO

In most cases, parasites alter more than one dimension in their host phenotype. Although multidimensionality in parasite-induced phenotypic alterations (PIPAs) seems to be the rule, it has started to be addressed only recently. Here, we critically review some of the problems associated with the definition, quantification and interpretation of multidimensionality in PIPAs. In particular, we confront ultimate and proximate accounts, and evaluate their own limitations. We end up by introducing several suggestions for the development of future research, including some practical guidelines for the quantitative analysis of multidimensionality in PIPAs.


Assuntos
Interações Hospedeiro-Parasita , Parasitos/fisiologia , Adaptação Psicológica , Animais , Humanos , Fenótipo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37583436

RESUMO

Clearing infection is an essential step to address many issues in host-parasite interactions but is challenging when dealing with endoparasites of large size relative to that of their host. Here, we took advantage of the lethality, contactless and versatility of high-energy laser beam to achieve it, using thorny-headed worms (Acanthocephala) and their amphipod intermediate host as a model system. We show that laser-based de-parasitization can be achieved using 450 nm Blue Diode Laser targeting carotenoid pigments in the bird acanthocephalan Polymorphus minutus. Using proboscis evagination failure and DNA degradation to establish parasite death, we found that 80% P. minutus died from within-host exposure to 5 pulses of 50 ms duration, 1.4 W power. Survival of infected gammarids 11 days after laser treatment was 60%. Preliminary tests were also performed with Nanosecond-Green Laser targeting lipids in Pomphorhynchus tereticollis, another acanthocephalan parasite. We discuss the efficiency and side-effect of laser treatment in this host-parasite system and highlight the perspectives that this technology more generally offers in parasitology.

6.
Parasite ; 30: 23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350678

RESUMO

Although interest in Acanthocephala seems to have reached only a small community of researchers worldwide, we show in this opinion article that this group of parasites is composed of excellent model organisms for studying key questions in parasite molecular biology and cytogenetics, evolutionary ecology, and ecotoxicology. Their shared ancestry with free-living rotifers makes them an ideal group to explore the origins of the parasitic lifestyle and evolutionary drivers of host shifts and environmental transitions. They also provide useful features in the quest to decipher the proximate mechanisms of parasite-induced phenotypic alterations and better understand the evolution of behavioral manipulation. From an applied perspective, acanthocephalans' ability to accumulate contaminants offers useful opportunities to monitor the impacts - and evaluate the possible mitigation - of anthropogenic pollutants on aquatic fauna and develop the environmental parasitology framework. However, exploring these exciting research avenues will require connecting fragmentary knowledge by enlarging the taxonomic coverage of molecular and phenotypic data. In this opinion paper, we highlight the needs and opportunities of research on Acanthocephala in three main directions: (i) integrative taxonomy (including non-molecular tools) and phylogeny-based comparative analysis; (ii) ecology and evolution of life cycles, transmission strategies and host ranges; and (iii) environmental issues related to global changes, including ecotoxicology. In each section, the most promising ideas and developments are presented based on selected case studies, with the goal that the present and future generations of parasitologists further explore and increase knowledge of Acanthocephala.


Title: Accrocher la communauté scientifique à des vers à la tête pleine d'épines : faits intéressants et passionnants, lacunes dans les connaissances et perspectives pour des orientations de recherche sur les Acanthocéphales. Abstract: Bien que l'intérêt pour les acanthocéphales semble n'avoir atteint qu'un petit nombre de chercheurs dans le monde, nous montrons dans cet article que ce groupe de parasites est composé d'excellents organismes modèles pour étudier les questions en suspens en biologie moléculaire et cytogénétique, écologie évolutive et écotoxicologie. Leur ascendance partagée avec les rotifères en fait un groupe idéal pour explorer les origines du mode de vie parasitaire et les moteurs évolutifs des changements d'hôtes et des transitions environnementales. Ils présentent également des caractéristiques intéressantes pour l'étude des mécanismes proximaux sous-tendant les altérations phénotypiques induites par les parasites, et ainsi mieux comprendre l'évolution de la manipulation comportementale. D'un point de vue appliqué, la capacité des acanthocéphales à accumuler les contaminants offre des opportunités utiles pour surveiller les impacts - et évaluer les possibilités d'atténuation - des pollutions anthropiques sur la faune aquatique et développer le domaine de la parasitologie environnementale. Cependant, l'exploration de ces pistes de recherche passionnantes nécessitera de relier des connaissances fragmentaires en élargissant la couverture taxonomique des données moléculaires et phénotypiques. Dans cet article, nous présentons l'état actuel de la recherche sur les acanthocéphales selon trois axes principaux : (i) la taxonomie intégrative (y compris les outils non-moléculaires) et la phylogénie à des fins d'analyse comparative ; (ii) l'écologie et l'évolution des cycles de vie, des stratégies d'exploitation des hôtes et de transmission ; (iii) les questions environnementales liées aux changements globaux, y compris l'écotoxicologie. Dans chaque section, nous soulignons les besoins et les opportunités, en espérant que cela incitera une nouvelle génération de parasitologues à s'intéresser aux acanthocéphales.


Assuntos
Acantocéfalos , Parasitos , Rotíferos , Animais , Acantocéfalos/genética , Filogenia
7.
Sci Rep ; 12(1): 21649, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522391

RESUMO

Trophically transmitted heteroxenous parasites of diverse clades can decrease or reverse antipredator behaviours in their intermediate hosts, thereby increasing their chances of reaching their final hosts. Such behavioural alterations could result from compromised cognitive abilities affecting fear- or more generally stress-related neurophysiological pathways. We tested this hypothesis in a key model system in the study of parasitic manipulation, the fish acanthocephalan parasite Pomphorhynchus tereticollis and its intermediate crustacean host Gammarus fossarum, using the 'threat of electric shock' paradigm. We exposed uninfected and infected G. fossarum to chronic and/or acute electric shock programs at two different intensities (voltage), and then quantified their sheltering behaviour as a proxy for anxiety-like state. Infected gammarids did not express anxiety-like response to electric shocks, while uninfected gammarids hid more when exposed to acute treatments, and when exposed to the high intensity chronic treatment. Interestingly, the lack of response in infected gammarids depended on parasite developmental stage. Our results support the hypothesis that this acanthocephalan parasite impacts the general anxiety-like circuitry of their intermediate host. Further studies are needed to investigate whether it involves inappropriate processing of information, impaired integration, or altered activation of downstream pathways initiating behavioural action.


Assuntos
Acantocéfalos , Anfípodes , Parasitos , Animais , Interações Hospedeiro-Parasita , Acantocéfalos/fisiologia , Anfípodes/parasitologia , Peixes , Ansiedade
8.
Naturwissenschaften ; 98(10): 825-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21814810

RESUMO

Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite's transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host-parasite and predator-parasite links.


Assuntos
Acantocéfalos/fisiologia , Doenças dos Peixes/transmissão , Cadeia Alimentar , Helmintíase Animal/transmissão , Animais , Doenças dos Peixes/epidemiologia , Peixes , França/epidemiologia , Helmintíase Animal/epidemiologia , Interações Hospedeiro-Parasita , Prevalência
9.
Aquat Toxicol ; 240: 105981, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34619424

RESUMO

The implementation of anesthetic procedure in aquatic crustaceans remains mostly limited to studies dealing with sedation and survival from anesthesia, possibly owing to the debated question of pain in invertebrates. However, two important issues are generally overlooked: actual analgesic-like effect, and possible physiological post-anesthesial effects. Here we report on the anesthetic properties and possible after-effects of MS-222 (Tricaine Methanesulfonate or Ethyl 3-aminobenzoate methanesulfonate) and Eugenol in the freshwater amphipod Gammarus pulex. We first optimized the concentration of MS-222, and the induction and recovery time, based on preliminary tests and published studies. We then relied on the nociceptive modulation of sheltering behavior to assess the analgesic-like effect of the two drugs, using a new semi-automated electric shock device. In addition, we monitored the impact of anesthesia with MS-222 on locomotor activity and oxygen consumption and addressed potential adverse effects upon recovery using biomarkers related to metabolism and neurotoxicity. We provide evidence for the sedative and analgesic-like effects of MS-222 at 600 mg.L-1 and, to a lesser extent, of Eugenol at 100 µL.L-1, with no decrease in survival rate at 6 days post anesthesia. Oxygen consumption was reduced -but not eliminated- under full anesthesia with 600 mg.L-1 MS-222. No significant physiological effect of anesthesia was evidenced on the activity of the mitochondrial electron transfer system, or that of acetylcholine esterase, nor on total antioxidant capacity. We therefore conclude to the efficiency of MS-222 as an anesthetic drug in G. pulex. Eugenol should be tested at a higher concentration to reach the same efficiency, providing that increased concentration would not incur side-effects. Furthermore, the new and original semi-automated electric chock device used to induce nociception can be easily adapted to any species of aquatic invertebrates and small-sized fish and tadpoles, offering a standardized and flexible protocol to study nociceptive response and anesthesia in aquatic organisms.


Assuntos
Anestésicos , Aminobenzoatos , Analgésicos , Anestésicos/farmacologia , Animais , Hipnóticos e Sedativos
10.
Proc Biol Sci ; 277(1701): 3693-702, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-20667874

RESUMO

Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host-parasite interactions impact the evolution of host-parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.


Assuntos
Parasitos/fisiologia , Doenças Parasitárias/transmissão , Animais , Evolução Biológica , Interações Hospedeiro-Parasita/imunologia , Modelos Biológicos , Parasitos/imunologia , Parasitos/patogenicidade , Doenças Parasitárias/imunologia , Doenças Parasitárias/parasitologia , Virulência/imunologia
11.
Biol Rev Camb Philos Soc ; 95(5): 1233-1251, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32342653

RESUMO

Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta-analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite-induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro-habitat and the anti-predation behaviour of infected hosts, and by promoting energy-saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host-parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.


Assuntos
Acantocéfalos , Anfípodes , Parasitos , Acantocéfalos/genética , Animais , Interações Hospedeiro-Parasita , Fenótipo , Filogenia
12.
Proc Biol Sci ; 276(1654): 169-76, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18796399

RESUMO

Manipulation by parasites is a catchy concept that has been applied to a large range of phenotypic alterations brought about by parasites in their hosts. It has, for instance, been suggested that the carotenoid-based colour of acanthocephalan cystacanths is adaptive through increasing the conspicuousness of infected intermediate hosts and, hence, their vulnerability to appropriate final hosts such as fish predators. We revisited the evidence in favour of adaptive coloration of acanthocephalan parasites in relation to increased trophic transmission using the crustacean amphipod Gammarus pulex and two species of acanthocephalans, Pomphorhynchus laevis and Polymorphus minutus. Both species show carotenoid-based colorations, but rely, respectively, on freshwater fish and aquatic bird species as final hosts. In addition, the two parasites differ in the type of behavioural alteration brought to their common intermediate host. Pomphorhynchus laevis reverses negative phototaxis in G. pulex, whereas P. minutus reverses positive geotaxis. In aquaria, trout showed selective predation for P. laevis-infected gammarids, whereas P. minutus-infected ones did not differ from uninfected controls in their vulnerability to predation. We tested for an effect of parasite coloration on increased trophic transmission by painting a yellow-orange spot on the cuticle of uninfected gammarids and by masking the yellow-orange spot of infected individuals with inconspicuous brown paint. To enhance realism, match of colour between painted mimics and true parasite was carefully checked using a spectrometer. We found no evidence for a role of parasite coloration in the increased vulnerability of gammarids to predation by trout. Painted mimics did not differ from control uninfected gammarids in their vulnerability to predation by trout. In addition, covering the place through which the parasite was visible did not reduce the vulnerability of infected gammarids to predation by trout. We discuss alternative evolutionary explanations for the origin and maintenance of carotenoid-based colorations in acanthocephalan parasites.


Assuntos
Acantocéfalos/fisiologia , Anfípodes/parasitologia , Carotenoides/metabolismo , Cor , Cadeia Alimentar , Interações Hospedeiro-Parasita , Acantocéfalos/metabolismo , Animais , Carotenoides/fisiologia , Comportamento Predatório , Truta/fisiologia
13.
J Parasitol ; 95(1): 20-4, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18576844

RESUMO

There are many impressive examples of host manipulation by parasites, but mechanisms underlying these ethological changes, as well as their physiological consequences, are not well characterized. Here, we analyzed part of the cerebral proteome of brine shrimp Artemia infected by manipulative cestodes, using for the first time the ProteinChip Surface-Enhanced Laser Desorption Ionization and Time of Fly Mass Spectrometry (SELDI-TOF MS) system, which has been proposed as an excellent way to analyze the host genome during the host-parasite interaction processes. We found 2 peptides downregulated in individuals infected by the dilepidid, Anomotaenia tringae (4.5 kDa), and by the 2 hymenolepidids, Flamingolepis liguloides and Confluaria podicipina (3.9 kDa), which are potential candidates for involvement with the manipulation process. The identification of 2 head peptides (4.1 and 4.2 kDa) overexpressed in all the categories in brine shrimp living at the surface (both infected individuals and uninfected controls) suggests its association with the different environmental conditions experienced at the water surface. In parallel, brine shrimp infected by C. podicipina showed significant values of triglycerides, potentially augmenting their profitability and attractiveness for the predaceous definitive host (grebes). We discuss our findings in relationship with current ideas on the complexity of parasitically modified organisms.


Assuntos
Artemia/parasitologia , Cestoides/fisiologia , Lipídeos/análise , Proteoma/química , Animais , Artemia/anatomia & histologia , Artemia/química , Regulação para Baixo , Interações Hospedeiro-Parasita , Peptídeos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triglicerídeos/análise
14.
Int J Parasitol Parasites Wildl ; 8: 135-144, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30792953

RESUMO

Parasites with complex life-cycles and trophic transmission are expected to show low specificity towards final hosts. However, testing this hypothesis may be hampered by low taxonomic resolution, particularly in helminths. We investigated this issue using two intestinal fish parasites with similar life-cycles and occurring in sympatry, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). We used species-specific ITS1 length polymorphism to discriminate parasite species from 910 adult acanthocephalans collected in 174 individual hosts from 12 fish species. Both P. laevis and P. tereticollis exhibited restricted host range within the community of available fish host species, and transmission bias compared to their relative abundance in intermediate hosts. The two parasites also exhibited low niche overlap, primarily due to their contrasting use of bentho-pelagic (P. laevis) and benthic (P. tereticollis) fish. Furthermore, parasite prevalence in intermediate hosts appeared to increase with taxonomic specificity in definitive host use. Comparison of P. laevis and P. tereticollis adult size in the two main definitive hosts, barbel and chub, suggested lower compatibility towards the fish species with the lowest parasite abundance, in particular in P. laevis. The determinants of low niche overlap between these two sympatric acanthocephalan species, and the contribution of definitive host range diversity to parasite transmission success, are discussed.

15.
R Soc Open Sci ; 4(12): 171558, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29308271

RESUMO

Anxiety is an emotional state generally expressed as sustained apprehension of the environment and elevated vigilance. It has been widely reported in vertebrates and, more recently, in a few invertebrate species. However, its fitness value remains elusive. We investigated anxiety-like behaviour and its consequences in an amphipod crustacean, using electric shock as aversive stimuli, and pharmacological assays. An anxiety-like state induced by electric shocks in Gammarus fossarum was expressed through increased sheltering behaviour in the absence of predation risk, thereby showing the pervasive nature of such behavioural response. Increasing the number of electric shocks both increased refuge use and delayed behavioural recovery. The behavioural effect of electric shock was mitigated by pre-treatment with LY354740, a metabotropic glutamate receptor group II/III agonist. Importantly, we found that this modulation of decision-making under an anxiety-like state resulted in an increased survival to predation in microcosm experiments. This study confirms the interest in taking an evolutionary view to the study of anxiety and calls for further investigation on the costs counterbalancing the survival benefit of an elevated anxiety level evidenced here.

16.
ACS Chem Neurosci ; 8(9): 1839-1846, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28617575

RESUMO

Histamine has been shown to modulate visual system and photic behavior in arthropods. However, few methods are available for the direct quantification of histamine and its precursor and metabolites in arthropod brain. In this work, a method for the separation of histamine, its precursor histidine, and its metabolite N-methyl-histamine from brain extracts of a freshwater crustacean has been developed using capillary electrophoresis with laser-induced fluorescence detection. Molecules were tagged on their primary amine function with naphthalene-2,3-dicarboxaldehyde, but derivatized histamine and N-methyl-histamine exhibited poor stability in contrast to derivatized histidine. To overcome this limitation, an automated derivatization performed within the capillary electrophoresis instrument was optimized and quantitatively validated. The limits of detection were 50, 30, and 60 nmol/L for histidine, histamine, and N-methyl-histamine, respectively. This study reports, for the first time, the amounts of histamine and its related compounds in brain extracts from populations of the freshwater amphipod Gammarus fossarum, and shows that these amounts vary mainly according to population and season, but are not affected by an experimental electrical shock.


Assuntos
Anfípodes/metabolismo , Automação Laboratorial , Eletroforese Capilar , Histamina/metabolismo , Histidina/metabolismo , Metilistaminas/metabolismo , Animais , Automação Laboratorial/métodos , Encéfalo/metabolismo , Calibragem , Eletroforese Capilar/métodos , Reprodutibilidade dos Testes , Rios , Estações do Ano
17.
Proc Biol Sci ; 273(1605): 3039-45, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17015346

RESUMO

Manipulative parasites can alter the phenotype of intermediate hosts in various ways. However, it is unclear whether such changes are just by-products of infection or adaptive and enhance transmission to the final host. Here, we show that the alteration of serotonergic activity is functionally linked to the alteration of specific behaviour in the amphipod Gammarus pulex infected with acanthocephalan parasites. Pomphorhynchus laevis and, to a lesser extent, Pomphorhynchus tereticollis altered phototactism, but not geotactism, in G. pulex, whereas the reverse was true for Polymorphus minutus. Serotonin (5-hydroxytryptamine, 5-HT) injected to uninfected G. pulex mimicked the altered phototactism, but had no effect on geotactism. Photophilic G. pulex infected with P. laevis or P. tereticollis showed a 40% increase in brain 5-HT immunoreactivity compared to photophobic, uninfected individuals. In contrast, brain 5-HT immunoreactivity did not differ between P. minutus-infected and uninfected G. pulex. Finally, brain 5-HT immunoreactivity differed significantly among P. tereticollis-infected individuals in accordance with their degree of manipulation. Our results demonstrate that altered 5-HT activity is not the mere consequence of infection by acanthocephalans but is specifically linked to the disruption of host photophobic behaviour, whereas the alteration of other behaviours such as geotactism may rely on distinct physiological routes.


Assuntos
Acantocéfalos/fisiologia , Anfípodes/parasitologia , Comportamento Animal , Encéfalo/parasitologia , Serotonina/metabolismo , Anfípodes/metabolismo , Anfípodes/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Interações Hospedeiro-Parasita
18.
Int J Parasitol ; 34(1): 45-54, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14711589

RESUMO

Studies on parasite species with a wide geographic and ecological range may be confounded by still equivocal taxonomic identification. Here, we investigated genetic polymorphism and behavioural changes induced in a common intermediate host, in two different forms of Pomphorhynchus laevis based on the morphology of the larval infective stage (cystacanth). A 'smooth type' (S) and a 'wrinkled type' (W) of cystacanth were distinguished based on their surface and shape. We analysed sequence divergence at both nuclear (ribosomal gene 18S rDNA, and ribosomal internal transcribed spacers, ITS1/ITS2) and mitochondrial (cytochrome c oxidase subunit 1) genes of P. laevis cystacanths and adults at various geographical scales. A high level of sequence divergence at ITS1, ITS2 and cytochrome c oxidase subunit 1 (11, 8 and 20%, respectively) was found between these two forms. The divergence pattern consistently discriminated two groups independently of geographic origin or host, and was congruent with larval morphology. The two forms also strongly differed in the intensity of behavioural change induced in their common intermediate host, Gammarus pulex, with the S-type parasite inducing a positive phototactism, whereas W-type infected gammarids were as photophylic as uninfected ones. Overall, our data strongly support the specific status of these two forms. We suggest that smooth cystacanths correspond to P. laevis, whereas wrinkled cystacanths might correspond to the previously described and poorly documented, Pomphorhynchus tereticollis, considered a synonym of P. laevis. This study also confirms the value of a joint analysis of internal transcribed spacers and cytochrome c oxidase subunit 1 genes to biogeographic studies on these species. Finally, we emphasize the importance of linking morphological and biological characteristics of acanthocephalan cystacanths to molecular data, in the study of the evolutionary ecology and systematics of this group.


Assuntos
Acantocéfalos/fisiologia , Evolução Molecular , Genes de Helmintos , Acantocéfalos/genética , Animais , Sequência de Bases , Interações Hospedeiro-Parasita , Larva/anatomia & histologia , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie
19.
Int J Parasitol ; 34(10): 1137-46, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15380685

RESUMO

We investigated the prevalence, transmission mode and fitness effects of infections by obligatory intracellular, microsporidian parasites in the freshwater amphipod Gammarus roeseli. We found three different microsporidia species in this host, all using transovarial (vertical) transmission. All three coexist at different prevalences in two host populations, but bi-infected individuals were rarely found, suggesting no (or very little) horizontal transmission. It is predicted that vertically-transmitted parasites may exhibit sex-specific virulence in their hosts, or they may have either positive or neutral effects on host fitness. All three species differed in their transmission efficiency and infection intensity and our data suggest that these microsporidia exert sex-specific virulence by feminising male hosts. The patterns of infection we found exhibit convergent evolution with those of another amphipod host, Gammarus duebeni. Interestingly, we found that infected females breed earlier in the reproductive season than uninfected females. This is the first study, to our knowledge, to report a positive effect of microsporidian infection on female host reproduction.


Assuntos
Crustáceos/parasitologia , Microsporea , Microsporidiose/transmissão , Frutos do Mar/parasitologia , Animais , Sequência de Bases , Crustáceos/fisiologia , Feminino , Interações Hospedeiro-Parasita , Transmissão Vertical de Doenças Infecciosas , Masculino , Microsporea/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/análise , Reprodução
20.
Comp Biochem Physiol B Biochem Mol Biol ; 139(1): 129-36, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15364296

RESUMO

Carotenoid compositions of two freshwater Gammarus species (Crustacea: Amphipoda) and of their common acanthocephalan parasite Polymorphus minutus were characterized. The effect of carotenoid uptake by the parasite was addressed by comparing the carotenoid content of uninfected and infected female hosts. Using high-pressure liquid chromatography (HPLC), co-chromatography of reference pigments and electron ionization mass spectrometry of collected HPLC fractions (EI-MS), several xanthophylls and non-polar compounds were identified. Seven kinds of carotenoids, mainly xanthophylls, were identified in gammarids. Astaxanthin was predominant, amounting to 40 wt.% of total carotenoid in both uninfected G. pulex and G. roeseli. By contrast, we found only non-polar compounds with a predominance of esterified forms of astaxanthin in P. minutus larvae. No significant effect of infection on carotenoid content was evidenced in G. pulex and G. roeseli females. Our study highlights the use of a Matrix Solid Phase Dispersion as an efficient extraction method of both xanthophylls and non-polar pigments in small samples, including lipid-rich ones as P. minutus parasite. We discuss on the presumptive pathway leading to the formation of free astaxanthin in gammarids via hydroxy compounds, and on the accumulation of esters of astaxanthin in parasites.


Assuntos
Acantocéfalos/química , Anfípodes/química , Anfípodes/parasitologia , Carotenoides/análise , Água Doce , Parasitos/química , Anfípodes/classificação , Animais , Carotenoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Feminino , Interações Hospedeiro-Parasita , Espectrometria de Massas , Estrutura Molecular , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa