Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Exp Dermatol ; 33(4): e15089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659312

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy worldwide, with most deaths caused by locally advanced and metastatic disease. Treatment of resectable metastases is typically limited to invasive surgery with adjuvant radiotherapy; however, many patients fail to respond and there is minimal data to predict response or propose effective alternatives. Precision medicine could improve this, though genomic biomarkers remain elusive in the high mutational background and genomic complexity of cSCC. A phenotypic approach to precision medicine using patient-derived ex vivo tumour models is gaining favour for its capacity to directly assess biological responses to therapeutics as a functional, predictive biomarker. However, the use of ex vivo models for guiding therapeutic selection has yet to be employed for metastatic cSCC. This review will therefore evaluate the existing experimental models of metastatic cSCC and discuss how ex vivo methods could overcome the shortcomings of these existing models. Disease-specific considerations for a prospective methodological pipeline will also be discussed in the context of precision medicine.


Assuntos
Carcinoma de Células Escamosas , Medicina de Precisão , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/secundário , Medicina de Precisão/métodos , Metástase Neoplásica
2.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333825

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer. Most patients who develop metastases (2-5%) present with advanced disease that requires a combination of radical surgery and adjuvant radiation therapy. There are few effective therapies for refractory disease. In this study, we describe novel patient-derived cell lines from cSCC metastases of the head and neck (designated UW-CSCC1 and UW-CSCC2). The cell lines genotypically and phenotypically resembled the original patient tumor and were tumorogenic in mice. Differences in cancer-related gene expression between the tumor and cell lines after various culturing conditions could be largely reversed by xenografting and reculturing. The novel drug susceptibilities of UW-CSCC1 and an irradiated subclone UW-CSCC1-R to drugs targeting cell cycle, PI3K/AKT/mTOR, and DNA damage pathways were observed using high-throughput anti-cancer and kinase-inhibitor compound libraries, which correlate with either copy number variations, targetable mutations and/or the upregulation of gene expression. A secondary screen of top hits in all three cell lines including PIK3CA-targeting drugs supports the utility of targeting the PI3K/AKT/mTOR pathway in this disease. UW-CSCC cell lines are thus useful preclinical models for determining targetable pathways and candidate therapeutics.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Biologia Computacional , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos NOD , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Bibliotecas de Moléculas Pequenas , Serina-Treonina Quinases TOR/antagonistas & inibidores , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Appl Microbiol Biotechnol ; 98(14): 6453-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24695826

RESUMO

Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.


Assuntos
Bactérias/classificação , Microbiologia Ambiental , Fungos/classificação , Viabilidade Microbiana , Microbiota , Astronave , Azidas/metabolismo , Bactérias/genética , Inibidores Enzimáticos/metabolismo , Fungos/genética , Metagenômica/métodos , Propídio/análogos & derivados , Propídio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
4.
Cancers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254859

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a very common skin malignancy with poor prognosis for patients with locally advanced or metastatic cSCC (mcSCC). PI3K/AKT/mTOR and cell cycle signalling pathways are often dysregulated in mcSCC. A combination drug approach has been theorised to overcome the underwhelming clinical performance of targeted inhibitors as single agents. This study investigates the potential of targeted inhibition of the p110α-subunit of PI3K with PIK-75 or BGT226 (P13Ki), and of CDK1/2/5/9 with dinaciclib (CDKi) as single agents and in combination. The patient-derived mcSCC cell lines, UW-CSCC1 and UW-CSCC2, were used to assess cell viability, migration, cell signalling, cell cycle distribution, and apoptosis. PIK-75, BGT226, and dinaciclib exhibited strong cytotoxic potency as single agents. Notably, the non-malignant HaCaT cell line was unaffected. In 2D cultures, PIK-75 synergistically enhanced the cytotoxic effects of dinaciclib in UW-CSCC2, but not UW-CSCC1. Interestingly, this pattern was reversed in 3D spheroid models. Despite the combination of PIK-75 and dinaciclib resulting in an increase in cell cycle arrest and apoptosis, and reduced cell motility, these differences were largely negligible compared to their single-agent counterpart. The differential responses between the cell lines correlated with driver gene mutation profiles. These findings suggest that personalised medicine approaches targeting PI3K and CDK pathways in combination may yield some benefit for mcSCC, and that more complex 3D models should be considered for drug responsiveness studies in this disease.

5.
STAR Protoc ; 4(2): 102331, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300829

RESUMO

Multi-cellular tumor spheroids (MCTS) have found widespread use in pre-clinical research. However, their complex three-dimensional structure makes immunofluorescent staining and imaging challenging. Here, we present a protocol for whole spheroid staining and automated imaging using laser-scanning confocal microscopy. We describe steps for cell culture, seeding of spheroids and transfer of MCTS, and adhesion to Ibidi chamber slides. We then detail fixation, immunofluorescent staining based on optimized reagent concentrations and incubation times, and confocal imaging facilitated by glycerol-based optical clearing.

6.
Cancers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894393

RESUMO

Approximately 3-5% of patients with cutaneous squamous cell carcinoma (CSCC) develop advanced disease, accounting for roughly 1% of all cancer deaths in Australia. Immunotherapy has demonstrated significant clinical benefit in advanced CSCC in several key phase II studies; however, there are limited data for patients treated outside of clinical trials. This is particularly relevant in advanced CSCC, which is most often seen in elderly patients with significant comorbidities. Thus, we aim to describe our experience with immunotherapy in a cohort of patients with advanced CSCC in Australia. We retrospectively reviewed all advanced CSCC patients treated with immunotherapy within the Illawarra and Shoalhaven Local Health District. Among the 51 patients treated with immunotherapy, there was an objective response rate (ORR) of 53% and disease control rate (DCR) of 67%. Our most significant predictor of response was sex, with male patients more likely to have better responses compared to female patients (DCR 85% vs. 41%, p < 0.0001), as well as improved progression-free survival (HR 4.6, 95%CI 1.9-10.8, p = 0.0007) and overall survival (HR 3.0, 95%CI 1.3-7.1, p = 0.006). Differential expression analysis of 770 immune-related genes demonstrated an impaired CD8 T-cell response in female patients. Our observed ORR of 53% is similar to that described in current literature with durable responses seen in the majority of patients.

7.
Discov Oncol ; 13(1): 42, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666359

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a disease with globally rising incidence and poor prognosis for patients with advanced or metastatic disease. Epithelial-mesenchymal transition (EMT) is a driver of metastasis in many carcinomas, and cSCC is no exception. We aimed to provide a systematic overview of the clinical and experimental evidence for EMT in cSCC, with critical appraisal of type and quality of the methodology used. We then used this information as rationale for potential drug targets against advanced and metastatic cSCC. All primary literature encompassing clinical and cell-based or xenograft experimental studies reporting on the role of EMT markers or related signalling pathways in the progression of cSCC were considered. A screen of 3443 search results yielded 86 eligible studies comprising 44 experimental studies, 22 clinical studies, and 20 studies integrating both. From the clinical studies a timeline illustrating the alteration of EMT markers and related signalling was evident based on clinical progression of the disease. The experimental studies reveal connections of EMT with a multitude of factors such as genetic disorders, cancer-associated fibroblasts, and matrix remodelling via matrix metalloproteinases and urokinase plasminogen activator. Additionally, EMT was found to be closely tied to environmental factors as well as to stemness in cSCC via NFκB and ß-catenin. We conclude that the canonical EGFR, canonical TGF-ßR, PI3K/AKT and NFκB signalling are the four signalling pillars that induce EMT in cSCC and could be valuable therapeutic targets. Despite the complexity, EMT markers and pathways are desirable biomarkers and drug targets for the treatment of advanced or metastatic cSCC.

8.
Front Oncol ; 12: 835929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480116

RESUMO

Cutaneous squamous cell carcinoma (cSCC) of the head and neck region is the second most prevalent skin cancer, with metastases to regional lymph nodes occurring in 2%-5% of cases. To further our understanding of the molecular events characterizing cSCC invasion and metastasis, we conducted targeted cancer progression gene expression and pathway analysis in non-metastasizing (PRI-) and metastasizing primary (PRI+) cSCC tumors of the head and neck region, cognate lymph node metastases (MET), and matched sun-exposed skin (SES). The highest differentially expressed genes in metastatic (MET and PRI+) versus non-metastatic tumors (PRI-) and SES included PLAU, PLAUR, MMP1, MMP10, MMP13, ITGA5, VEGFA, and various inflammatory cytokine genes. Pathway enrichment analyses implicated these genes in cellular pathways and functions promoting matrix remodeling, cell survival and migration, and epithelial to mesenchymal transition, which were all significantly activated in metastatic compared to non-metastatic tumors (PRI-) and SES. We validated the overexpression of urokinase plasminogen activator receptor (uPAR, encoded by PLAUR) in an extended patient cohort by demonstrating higher uPAR staining intensity in metastasizing tumors. As pathway analyses identified epidermal growth factor (EGF) as a potential upstream regulator of PLAUR, the effect of EGF on uPAR expression levels and cell motility was functionally validated in human metastatic cSCC cells. In conclusion, we propose that uPAR is an important driver of metastasis in cSCC and represents a potential therapeutic target in this disease.

9.
Front Oncol ; 12: 919118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982973

RESUMO

Metastatic cutaneous squamous cell carcinoma (CSCC) is a highly morbid disease requiring radical surgery and adjuvant therapy, which is associated with a poor prognosis. Yet, compared to other advanced malignancies, relatively little is known of the genomic landscape of metastatic CSCC. We have previously reported the mutational signatures and mutational patterns of CCCTC-binding factor (CTCF) regions in metastatic CSCC. However, many other genomic components (indel signatures, non-coding drivers, and structural variants) of metastatic CSCC have not been reported. To this end, we performed whole genome sequencing on lymph node metastases and blood DNA from 25 CSCC patients with regional metastases of the head and neck. We designed a multifaceted computational analysis at the whole genome level to provide a more comprehensive perspective of the genomic landscape of metastatic CSCC. In the non-coding genome, 3' untranslated region (3'UTR) regions of EVC (48% of specimens), PPP1R1A (48% of specimens), and ABCA4 (20% of specimens) along with the tumor-suppressing long non-coding RNA (lncRNA) LINC01003 (64% of specimens) were significantly functionally altered (Q-value < 0.05) and represent potential non-coding biomarkers of CSCC. Recurrent copy number loss in the tumor suppressor gene PTPRD was observed. Gene amplification was much less frequent, and few genes were recurrently amplified. Single nucleotide variants driver analyses from three tools confirmed TP53 and CDKN2A as recurrently mutated genes but also identified C9 as a potential novel driver in this disease. Furthermore, indel signature analysis highlighted the dominance of ID signature 13 (ID13) followed by ID8 and ID9. ID9 has previously been shown to have no association with skin melanoma, unlike ID13 and ID8, suggesting a novel pattern of indel variation in metastatic CSCC. The enrichment analysis of various genetically altered candidates shows enrichment of "TGF-beta regulation of extracellular matrix" and "cell cycle G1 to S check points." These enriched terms are associated with genetic instability, cell proliferation, and migration as mechanisms of genomic drivers of metastatic CSCC.

10.
Phys Med Biol ; 65(21): 215018, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32726756

RESUMO

Metastases from cutaneous squamous cell carcinoma (cSCC) occur in 2%-5% of cases. Surgery is the standard treatment, often combined with adjuvant radiotherapy. Concurrent carboplatin treatment with post-operative radiotherapy may be prescribed, although it has not shown benefit in recent clinical trials in high-risk cSCC patients. The novel high-Z nanoparticle thulium (III) oxide has been shown to enhance radiation dose delivery to brain tumors by specific uptake of these nanoparticles into the cancerous tissue. As the dose-enhancement capacity of thulium oxide nanoparticles following radiotherapy against metastatic cSCC cells is unknown, its efficacy as a radiosensitizer was evaluated, with and without carboplatin. Novel and validated human patient-derived cell lines of metastatic cSCC were used. The sensitivity of the cells to radiation was investigated using short-term proliferation assays as well as clonogenic survival as the radiobiological endpoint. Briefly, cells were irradiated with 125 kVp orthovoltage x-rays (0-6 Gy) with and without thulium oxide nanoparticles (99.9% trace metals basis; 50 µg ml-1) or low dose carboplatin pre-sensitization. Cellular uptake of the nanoparticles was first confirmed by microscopy and found to have no impact on short-term cell survival for the cSCC cells, highlighting the biocompatibility of thulium oxide nanoparticles. Clonogenic cell survival assays confirmed radio-sensitization when exposed to thulium nanoparticles, with the cell sensitivity increasing by a factor of 1.24 (calculated at the 10% survival fraction) for the irradiated cSCC cells. The combination of carboplatin with thulium oxide nanoparticles with irradiation did not result in significant further reductions in survival compared to nanoparticles alone. This is the first study to provide in vitro data demonstrating the independent radiosensitization effect of high-Z nanoparticles against metastatic cSCC with or without carboplatin. Further preclinical investigations with radiotherapy plus high-Z nanoparticles for the management of metastatic cSCC are warranted.


Assuntos
Carcinoma de Células Escamosas/patologia , Nanopartículas , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Neoplasias Cutâneas/patologia , Túlio/química , Túlio/farmacologia , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias
11.
Sci Rep ; 10(1): 539, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953491

RESUMO

Circulating tumour cell (CTC) enumeration and profiling has been established as a valuable clinical tool in many solid malignancies. A key challenge in CTC research is the limited number of cells available for study. Ex vivo CTC culture permits expansion of these rare cell populations for detailed characterisation, functional assays including drug sensitivity testing, and investigation of the pathobiology of metastases. We report for the first time the establishment and characterisation of two continuous CTC lines from patients with gastroesophageal cancer. The two cell lines (designated UWG01CTC and UWG02CTC) demonstrated rapid tumorigenic growth in immunodeficient mice and exhibit distinct genotypic and phenotypic profiles which are consistent with the tumours of origin. UWG02CTC exhibits an EpCAM+, cytokeratin+, CD44+ phenotype, while UWG01CTC, which was derived from a patient with metastatic neuroendocrine cancer, displays an EpCAM-, weak cytokeratin phenotype, with strong expression of neuroendocrine markers. Further, the two cell lines show distinct differences in drug and radiation sensitivity which match differential cancer-associated gene expression pathways. This is strong evidence implicating EpCAM negative CTCs in metastasis. These novel, well characterised, long-term CTC cell lines from gastroesophageal cancer will facilitate ongoing research into metastasis and the discovery of therapeutic targets.


Assuntos
Técnicas de Cultura de Células/métodos , Molécula de Adesão da Célula Epitelial/metabolismo , Células Neoplásicas Circulantes/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Carboplatina/farmacologia , Transformação Celular Neoplásica , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica , Células Neoplásicas Circulantes/efeitos dos fármacos , Neoplasias Gástricas/sangue , Neoplasias Gástricas/genética , Fatores de Tempo
12.
Genome Announc ; 5(32)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798168

RESUMO

The draft genome sequences of six Bacillus strains, isolated from the International Space Station and belonging to the Bacillus anthracis-B. cereus-B. thuringiensis group, are presented here. These strains were isolated from the Japanese Experiment Module (one strain), U.S. Harmony Node 2 (three strains), and Russian Segment Zvezda Module (two strains).

13.
mSystems ; 2(3)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680972

RESUMO

In an ongoing Microbial Observatory investigation of the International Space Station (ISS), 11 Bacillus strains (2 from the Kibo Japanese experimental module, 4 from the U.S. segment, and 5 from the Russian module) were isolated and their whole genomes were sequenced. A comparative analysis of the 16S rRNA gene sequences of these isolates showed the highest similarity (>99%) to the Bacillus anthracis-B. cereus-B. thuringiensis group. The fatty acid composition, polar lipid profile, peptidoglycan type, and matrix-assisted laser desorption ionization-time of flight profiles were consistent with the B. cereus sensu lato group. The phenotypic traits such as motile rods, enterotoxin production, lack of capsule, and resistance to gamma phage/penicillin observed in ISS isolates were not characteristics of B. anthracis. Whole-genome sequence characterizations showed that ISS strains had the plcR non-B. anthracis ancestral "C" allele and lacked anthrax toxin-encoding plasmids pXO1 and pXO2, excluding their identification as B. anthracis. The genetic identities of all 11 ISS isolates characterized via gyrB analyses arbitrarily identified them as members of the B. cereus group, but traditional DNA-DNA hybridization (DDH) showed that the ISS isolates are similar to B. anthracis (88% to 90%) but distant from the B. cereus (42%) and B. thuringiensis (48%) type strains. The DDH results were supported by average nucleotide identity (>98.5%) and digital DDH (>86%) analyses. However, the collective phenotypic traits and genomic evidence were the reasons to exclude the ISS isolates from B. anthracis. Nevertheless, multilocus sequence typing and whole-genome single nucleotide polymorphism analyses placed these isolates in a clade that is distinct from previously described members of the B. cereus sensu lato group but closely related to B. anthracis. IMPORTANCE The International Space Station Microbial Observatory (Microbial Tracking-1) study is generating a microbial census of the space station's surfaces and atmosphere by using advanced molecular microbial community analysis techniques supported by traditional culture-based methods and modern bioinformatic computational modeling. This approach will lead to long-term, multigenerational studies of microbial population dynamics in a closed environment and address key questions, including whether microgravity influences the evolution and genetic modification of microorganisms. The spore-forming Bacillus cereus sensu lato group consists of pathogenic (B. anthracis), food poisoning (B. cereus), and biotechnologically useful (B. thuringiensis) microorganisms; their presence in a closed system such as the ISS might be a concern for the health of crew members. A detailed characterization of these potential pathogens would lead to the development of suitable countermeasures that are needed for long-term future missions and a better understanding of microorganisms associated with space missions.

14.
Microbiome ; 3: 50, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26502721

RESUMO

BACKGROUND: The International Space Station (ISS) is a unique built environment due to the effects of microgravity, space radiation, elevated carbon dioxide levels, and especially continuous human habitation. Understanding the composition of the ISS microbial community will facilitate further development of safety and maintenance practices. The primary goal of this study was to characterize the viable microbiome of the ISS-built environment. A second objective was to determine if the built environments of Earth-based cleanrooms associated with space exploration are an appropriate model of the ISS environment. RESULTS: Samples collected from the ISS and two cleanrooms at the Jet Propulsion Laboratory (JPL, Pasadena, CA) were analyzed by traditional cultivation, adenosine triphosphate (ATP), and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assays to estimate viable microbial populations. The 16S rRNA gene Illumina iTag sequencing was used to elucidate microbial diversity and explore differences between ISS and cleanroom microbiomes. Statistical analyses showed that members of the phyla Actinobacteria, Firmicutes, and Proteobacteria were dominant in the samples examined but varied in abundance. Actinobacteria were predominant in the ISS samples whereas Proteobacteria, least abundant in the ISS, dominated in the cleanroom samples. The viable bacterial populations seen by PMA treatment were greatly decreased. However, the treatment did not appear to have an effect on the bacterial composition (diversity) associated with each sampling site. CONCLUSIONS: The results of this study provide strong evidence that specific human skin-associated microorganisms make a substantial contribution to the ISS microbiome, which is not the case in Earth-based cleanrooms. For example, Corynebacterium and Propionibacterium (Actinobacteria) but not Staphylococcus (Firmicutes) species are dominant on the ISS in terms of viable and total bacterial community composition. The results obtained will facilitate future studies to determine how stable the ISS environment is over time. The present results also demonstrate the value of measuring viable cell diversity and population size at any sampling site. This information can be used to identify sites that can be targeted for more stringent cleaning. Finally, the results will allow comparisons with other built sites and facilitate future improvements on the ISS that will ensure astronaut health.


Assuntos
Microbiologia do Ar , Poeira , Microbiota , Astronave , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Análise por Conglomerados , Ambiente Controlado , Fungos/classificação , Fungos/genética , Humanos , Metagenoma , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa