Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 26(Pt 3): 700-707, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074433

RESUMO

The THz beamline at FLASH, DESY, provides both tunable (1-300 THz) narrow-bandwidth (∼10%) and broad-bandwidth intense (up to 150 uJ) THz pulses delivered in 1 MHz bursts and naturally synchronized with free-electron laser X-ray pulses. Combination of these pulses, along with the auxiliary NIR and VIS ultrashort lasers, supports a plethora of dynamic investigations in physics, material science and biology. The unique features of the FLASH THz pulses and the accelerator source, however, bring along a set of challenges in the diagnostics of their key parameters: pulse energy, spectral, temporal and spatial profiles. Here, these challenges are discussed and the pulse diagnostic tools developed at FLASH are presented. In particular, a radiometric power measurement is presented that enables the derivation of the average pulse energy within a pulse burst across the spectral range, jitter-corrected electro-optical sampling for the full spectro-temporal pulse characterization, spatial beam profiling along the beam transport line and at the sample, and a lamellar grating based Fourier transform infrared spectrometer for the on-line assessment of the average THz pulse spectra. Corresponding measurement results provide a comprehensive insight into the THz beamline capabilities.

2.
Biophys J ; 113(8): 1685-1696, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045863

RESUMO

The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct ß-sheets sequentially unfold using the unique possibility offered by high-pressure Fourier transform infrared spectroscopy. The results point toward the formation of kinetic traps in the energy landscape of aS fibril disassembly and the presence of transient partially folded species during the process. Since we found that the dissociation of wild-type aS fibrils by high pressure is reversible upon pressure release, the disassembled molecules likely retain structural information that favors fibril reformation. To deconstruct the role of the different regions of aS sequence in this process, we measured the high-pressure dissociation of amyloids formed by covalent chimeric dimers of aS (syn-syn) and by the aS deletion mutant that lacks the C-terminus, i.e., aS (1-99). The results allowed us to single out the role of dimerization and that of the C-terminus in the complete maturation of fibrillar aS.


Assuntos
Amiloide/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/química , Dicroísmo Circular , Escherichia coli , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Mutação , Pressão , Conformação Proteica em Folha beta , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , alfa-Sinucleína/química
3.
Arch Biochem Biophys ; 627: 46-55, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624352

RESUMO

α-synuclein amyloid fibrils are found in surviving neurons of Parkinson's disease affected patients, but the role they play in the disease development is still under debate. A growing number of evidences points to soluble oligomers as the major cytotoxic species, while insoluble fibrillar aggregates could even play a protection role. In this work, we investigate α-synuclein fibrils dissociation induced at high pressure by means of Small Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy. Fibrils were produced from wild type α-synuclein and two familial mutants, A30P and A53T. Our results enlighten the different reversible nature of α-synuclein fibrils fragmentation at high pressure and suggest water excluded volumes presence in the fibrils core. Wild type and A30P species stabilized at high pressure are highly amyloidogenic and quickly re-associate into fibrils upon decompression, while A53T species shows a partial reversibility of the process likely due to the presence of an intermediate oligomeric state stabilized at high pressure. The amyloid fibrils dissociation process is here suggested to be associated to a negative activation volume, supporting the notion that α-synuclein fibrils are in a high-volume and high-compressibility state and hinting at the presence of a hydration-mediated activated state from which dissociation occurs.


Assuntos
Amiloide/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/química , Amiloide/genética , Humanos , Doença de Parkinson/genética , Mutação Puntual , Pressão , Espalhamento a Baixo Ângulo , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , alfa-Sinucleína/química , alfa-Sinucleína/genética
4.
J Synchrotron Radiat ; 23(1): 106-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698051

RESUMO

TeraFERMI is the new terahertz (THz) beamline for pump-probe studies on the femtosecond time-scale, under construction at the FERMI free-electron laser (FEL) facility in Trieste, Italy. The beamline will take advantage of the coherent radiation emitted by the spent electrons from the FEL undulators, before being dumped. This will result in short, coherent, high-power THz pulses to be used as a pump beam, in order to modulate structural properties of matter, thereby inducing phase transitions. The TeraFERMI beamline collects THz radiation in the undulator hall and guides it along a beam pipe which is approximately 30 m long, extending across the safety hutch and two shielding walls. Here the optical design, which will allow the efficient transport of the emitted THz radiation in the experimental hall, is presented.

5.
Nano Lett ; 15(1): 386-91, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25422163

RESUMO

Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 µm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

6.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903777

RESUMO

We report a spectroscopic investigation of potassium-lithium-tantalate-niobate (KTN:Li) across its room-temperature ferroelectric phase transition, when the sample manifests a supercrystal phase. Reflection and transmission results indicate an unexpected temperature-dependent enhancement of average index of refraction from 450 nm to 1100 nm, with no appreciable accompanying increase in absorption. Second-harmonic generation and phase-contrast imaging indicate that the enhancement is correlated to ferroelectric domains and highly localized at the supercrystal lattice sites. Implementing a two-component effective medium model, the response of each lattice site is found to be compatible with giant broadband refraction.

7.
Nat Commun ; 13(1): 2667, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562345

RESUMO

The competition between the electron-hole Coulomb attraction and the 3D dielectric screening dictates the optical properties of layered semiconductors. In low-dimensional materials, the equilibrium dielectric environment can be significantly altered by the ultrafast excitation of photo-carriers, leading to renormalized band gap and exciton binding energies. Recently, black phosphorus emerged as a 2D material with strongly layer-dependent electronic properties. Here, we resolve the response of bulk black phosphorus to mid-infrared pulses tuned across the band gap. We find that, while above-gap excitation leads to a broadband light-induced transparency, sub-gap pulses drive an anomalous response, peaked at the single-layer exciton resonance. With the support of DFT calculations, we tentatively ascribe this experimental evidence to a non-adiabatic modification of the screening environment. Our work heralds the non-adiabatic optical manipulation of the electronic properties of 2D materials, which is of great relevance for the engineering of versatile van der Waals materials.

8.
Nano Lett ; 10(12): 4819-23, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21058711

RESUMO

We measure the optical conductivity, σ1(ω), of (SrMnO3)n/(LaMnO3)2n superlattices (SL) for n = 1, 3, 5, and 8 and 10 < T < 400 K. Data show a T-dependent insulator to metal transition (IMT) for n ≤ 3, driven by the softening of a polaronic mid-infrared band. At n = 5 that softening is incomplete, while at the largest-period n = 8 compound the MIR band is independent of T and the SL remains insulating. One can thus first observe the IMT in a Manganite system in the absence of the disorder due to chemical doping. Unsuccessful reconstruction of the SL optical properties from those of the original bulk materials suggests that (SrMnO3)n/(LaMnO3)2n heterostructures give rise to a novel electronic state.

9.
ACS Appl Mater Interfaces ; 13(5): 6813-6819, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497183

RESUMO

Perovskite-based heterostructures have recently gained remarkable interest, thanks to atomic-scale precision engineering. These systems are very susceptible to small variations of control parameters, such as two-dimensionality, strain, lattice polarizability, and doping. Focusing on the rare-earth nickelate diagram, LaNiO3 (LNO) catches the eye, being the only nickelate that does not undergo a metal-to-insulator transition (MIT). Therefore, the ground state of LNO has been studied in several theoretical and experimental papers. Here, we show by means of infrared spectroscopy that an MIT can be driven by dimensionality control in ultrathin LNO films when the number of unit cells drops to 2. Such a dimensionality tuning can eventually be tailored when a physically implemented monolayer in the ultrathin films is replaced by a digital single layer embedded in the Ruddlesden-Popper Lan+1NinO3n+1 series. We provide spectroscopic evidence that the dimensionality-induced MIT in Ruddlesden-Popper nickelates strongly resembles that of ultrathin LNO films. Our results can pave the way to the employment of Ruddlesden-Popper Lan+1NinO3n+1 to tune the electronic properties of LNO through dimensional transition without the need of physically changing the number of unit cells in thin films.

10.
Nat Commun ; 9(1): 763, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472554

RESUMO

Phonons (quanta of collective vibrations) are a major source of energy dissipation and drive some of the most relevant properties of materials. In nanotechnology, phonons severely affect light emission and charge transport of nanodevices. While the phonon response is conventionally considered an inherent property of a nanomaterial, here we show that the dipole-active phonon resonance of semiconducting (CdS) nanocrystals can be drastically reshaped inside a terahertz plasmonic nanocavity, via the phonon strong coupling with the cavity vacuum electric field. Such quantum zero-point field can indeed reach extreme values in a plasmonic nanocavity, thanks to a mode volume well below λ3/107. Through Raman measurements, we find that the nanocrystals within a nanocavity exhibit two new "hybridized" phonon peaks, whose spectral separation increases with the number of nanocrystals. Our findings open exciting perspectives for engineering the optical phonon response of functional nanomaterials and for implementing a novel platform for nanoscale quantum optomechanics.

11.
Nat Commun ; 7: 11421, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113395

RESUMO

Electrons with a linear energy/momentum dispersion are called massless Dirac electrons and represent the low-energy excitations in exotic materials such as graphene and topological insulators. Dirac electrons are characterized by notable properties such as a high mobility, a tunable density and, in topological insulators, a protection against backscattering through the spin-momentum locking mechanism. All those properties make graphene and topological insulators appealing for plasmonics applications. However, Dirac electrons are expected to present also a strong nonlinear optical behaviour. This should mirror in phenomena such as electromagnetic-induced transparency and harmonic generation. Here we demonstrate that in Bi2Se3 topological insulator, an electromagnetic-induced transparency is achieved under the application of a strong terahertz electric field. This effect, concomitantly determined by harmonic generation and charge-mobility reduction, is exclusively related to the presence of Dirac electron at the surface of Bi2Se3, and opens the road towards tunable terahertz nonlinear optical devices based on topological insulator materials.

12.
Biophys Chem ; 199: 17-24, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25776525

RESUMO

Amyloid and amyloid-like fibrils are a general class of protein aggregates and represent a central topic in life sciences for their involvement in several neurodegenerative disorders and their unique mechanical and supramolecular morphological properties. Both their biological role and their physical properties, including their high mechanical stability and thermodynamic inertia, are related to the structural arrangement of proteins in the aggregates at molecular level. Significant variations may exist in the supramolecular organization of the commonly termed cross-ß structure that constitutes the amyloid core. In this context, a fine knowledge of the structural details in fibrils may give significant information on the assembly process and on possible ways of tuning or inhibiting it. Here we propose a simple method based on the combined use of Fourier transform infrared spectroscopy and Fourier transform Raman spectroscopy to accurately reveal structural details in the fibrillar aggregates, side-chain exposure and intermolecular interactions. Interestingly, coupled analysis of mid-infrared spectra reveals antiparallel ß-sheet orientation in ConA fibrils. We also report the comparison between THz absorption spectra of Concanavalin A in its native and fibrillar state at different hydration levels, allowing obtaining corroboration of peaks assignation in this range and information on the effect of amyloid supramolecular arrangement on the network dynamics of hydration water.


Assuntos
Amiloide/química , Concanavalina A/química , Humanos , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Vibração
13.
Nat Commun ; 5: 5112, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25290587

RESUMO

The non-equilibrium approach to correlated electron systems is often based on the paradigm that different degrees of freedom interact on different timescales. In this context, photo-excitation is treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast dynamics of quasi-particles in an archetypal strongly correlated charge-transfer insulator (La2CuO(4+δ)), we show that the interaction between electrons and bosons manifests itself directly in the photo-excitation processes of a correlated material. With the aid of a general theoretical framework (Hubbard-Holstein Hamiltonian), we reveal that sub-gap excitation pilots the formation of itinerant quasi-particles, which are suddenly dressed by an ultrafast reaction of the bosonic field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa