Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; : 175617, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159693

RESUMO

Groundwater inflow can be a significant source of nutrients for riverine ecosystems, which can affect eutrophication i.e., the elevated primary production and the corresponding accumulation of algal biomass. Experimental and modelling work has shown that benthic algae (autotrophic biofilms) in particular benefit, as they have direct access to the inflowing groundwater-borne nutrients. Primarily the supply of phosphorus (P) enhances pelagic algal biomass, as it is the limiting nutrient for primary production in most freshwater systems. In this study, we estimate the effect of groundwater inflow on overall eutrophication of a large, European lowland river and tested its seasonal effect on biofilms in particular. We calculated the effects on overall eutrophication during summer according to the estimated input of groundwater-borne P and the C:P stoichiometry of planktonic algae in the Elbe River. Our model indicated that these diffuse P inputs have the potential to significantly increase eutrophication. Groundwater-P can contribute up to 1.5 t/d PO4 over the investigated 450 km stretch of the Elbe River under low flow conditions. This would result in an additional planktonic load of about 46 t/d of particulate organic carbon, thereby contributing to eutrophication at the regional scale in this river. In contrast, at the local scale, biofilms were collected seasonally from artificial substrata exposed in the river either in hydrogeologically active areas with groundwater inflow, or in areas of varying hydraulic connectivity. Analyses of biofilm macronutrients, structural components and biofilm community composition show distinct effects of season, hydrogeology and groundwater inflow. The dominant predictors were season and the interaction between hydrogeology and groundwater. Benthic eutrophication is most likely to occur in autumn in areas of loose rock with high groundwater inflow. The strong interaction of environmental factors in determining benthic eutrophication highlights the need to assess these factors in combination rather than in isolation.

2.
Biol Rev Camb Philos Soc ; 98(2): 450-461, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36307907

RESUMO

Both gradual and extreme weather changes trigger complex ecological responses in river ecosystems. It is still unclear to what extent trend or event effects alter biodiversity and functioning in river ecosystems, adding considerable uncertainty to predictions of their future dynamics. Using a comprehensive database of 71 published studies, we show that event - but not trend - effects associated with extreme changes in water flow and temperature substantially reduce species richness. Furthermore, event effects - particularly those affecting hydrological dynamics - on biodiversity and primary productivity were twice as high as impacts due to gradual changes. The synthesis of the available evidence reveals that event effects induce regime shifts in river ecosystems, particularly affecting organisms such as invertebrates. Among extreme weather events, dryness associated with flow interruption caused the largest effects on biota and ecosystem functions in rivers. Effects on ecosystem functions (primary production, organic matter decomposition and respiration) were asymmetric, with only primary production exhibiting a negative response to extreme weather events. Our meta-analysis highlights the disproportionate impact of event effects on river biodiversity and ecosystem functions, with implications for the long-term conservation and management of river ecosystems. However, few studies were available from tropical areas, and our conclusions therefore remain largely limited to temperate river systems. Further efforts need to be directed to assemble evidence of extreme events on river biodiversity and functioning.


Assuntos
Ecossistema , Clima Extremo , Animais , Rios , Biodiversidade , Invertebrados/fisiologia
3.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766791

RESUMO

The sensitivity and spatial recovery of river sediment biofilms along 1 km after the input of two wastewater treatment plants (WWTPs) located in two river reaches with different degrees of anthropogenic influence were investigated. First, at the upper reach, we observed an inhibition of some microbial functions (microbial respiration and extracellular enzyme activities) and strong shifts in bacterial community composition (16S rRNA gene), whereas an increase in microbial biomass and activity and less pronounced effect on microbial diversity and community composition were seen at the lower reach. Second, at the lower reach we observed a quick spatial recovery (around 200 m downstream of the effluent) as most of the functions and community composition were similar to those from reference sites. On the other hand, bacterial community composition and water quality at the upper reach was still altered 1 km from the WWTP effluent. Our results indicate that biofilms in the upstream sites were more sensitive to the effect of WWTPs due to a lower degree of tolerance after a disturbance than communities located in more anthropogenically impacted sites.


Assuntos
Rios , Águas Residuárias , Bactérias/genética , Biofilmes , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa