RESUMO
Androstenedione (AD) is a key intermediate in the body's steroid metabolism, used as a precursor for several steroid substances, such as testosterone, estradiol, ethinyl estradiol, testolactone, progesterone, cortisone, cortisol, prednisone, and prednisolone. The world market for AD and ADD (androstadienedione) exceeds 1000 tons per year, which stimulates the pharmaceutical industry's search for newer and cheaper raw materials to produce steroidal compounds. In light of this interest, we aimed to investigate the progress of AD biosynthesis from phytosterols by prospecting scientific articles (Scopus, Web of Science, and Google Scholar databases) and patents (USPTO database). A wide variety of articles and patents involving AD and phytosterol were found in the last few decades, resulting in 108 relevant articles (from January 2000 to December 2021) and 23 patents of interest (from January 1976 to December 2021). The separation of these documents into macro, meso, and micro categories revealed that most studies (articles) are performed in China (54.8%) and in universities (76%), while patents are mostly granted to United States companies. It also highlights the fact that AD production studies are focused on "process improvement" techniques and on possible modifications of the "microorganism" involved in biosynthesis (64 and 62 documents, respectively). The most-reported "process improvement" technique is "chemical addition" (40%), which means that the addition of solvents, surfactants, cofactors, inducers, ionic liquids, etc., can significantly increase AD production. Microbial genetic modifications stand out in the "microorganism" category because this strategy improves AD yield considerably. These documents also revealed the main aspects of AD and ADD biosynthesis: Mycolicibacterium sp. (basonym: Mycobacterium sp.) (40%) and Mycolicibacterium neoaurum (known previously as Mycobacterium neoaurum) (32%) are the most recurrent species studied. Microbial incubation temperatures can vary from 29 °C to 37 °C; incubation can last from 72 h to 14 days; the mixture is agitated at 140 to 220 rpm; vegetable oils, mainly soybean, can be used as the source of a mixture of phytosterols. In general, the results obtained in the present technological prospecting study are fundamental to mapping the possibilities of AD biosynthesis process optimization, as well as to identifying emerging technologies and methodologies in this scenario.
Assuntos
Androstenodiona , Fitosteróis , Androgênios , Androstenodiona/metabolismo , Biotransformação , Mycobacteriaceae , Fitosteróis/química , Esteroides/metabolismoRESUMO
The objective of this study was to determine the best operational conditions for obtaining red propolis extract with high antioxidant potential through supercritical fluid extraction (SFE) technology, using carbon dioxide (CO2) as the supercritical fluid and ethanol as the cosolvent. The following parameters were studied: overall extraction curve, S/F (mass of CO2/mass of sample), cosolvent percentage (0, 1, 2 and 4%) and global yield isotherms as a function of different pressures (250, 350 and 450 bar) and temperatures (31.7, 40 and 50 °C). Within the investigated parameters, the best conditions found were an S/F of 131 and the use of ethanol at the highest concentration (4% w/w), which resulted in higher extract yields and higher content of antioxidant compounds. Formononetin, the main biomarker of red propolis, was the compound found at the highest amounts in the extracts. As expected, the temperature and pressure conditions also influenced the process yield, with 350 bar and 40 °C being the best conditions for obtaining bioactive compounds from a sample of red propolis. The novel results for red propolis found in this study show that it is possible to obtain extracts with high antioxidant potential using a clean technology under the defined conditions.
Assuntos
Antioxidantes/química , Cromatografia com Fluido Supercrítico/métodos , Fenóis/química , Própole/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Ascomicetos/efeitos dos fármacos , Dióxido de Carbono/química , Cromatografia Líquida de Alta Pressão , Etanol/química , Flavonoides/química , Flavonoides/farmacologia , Humanos , Isoflavonas/química , Fenóis/farmacologia , Própole/isolamento & purificação , Própole/farmacologia , Solventes/químicaRESUMO
This study focuses on optimizing the ultrasound-assisted extraction (UAE) of bioactive compounds from purple-fleshed sweet potatoes (PFSP) for potential use as natural colorants. Factors such as time, temperature, and solid-to-liquid ratio were varied using a Box-Behnken Design. The optimal conditions were determined as 75 min, 70 °C, and a 1:15 m/v solid-to-liquid ratio, resulting in 18.372 mg/100 g total anthocyanin (TA) and 151.160 mg GAE/100 g total phenolic content (TPC). The validation yielded 18.822 mg/100 g for total anthocyanin and 162.174 mg GAE/100 g for total phenolic content, showing a 7% difference from predictions. UAE significantly increased TA extraction by 81% and TPC by 93% compared with the conventional method, with a notable reduction in process time from 24 h to 75 min. Additionally, three kinetic models were tested to compare extraction mechanisms, confirming the efficiency of UAE for PFSP bioactive compound recovery. This study proposes the UAE technique as a highly effective means of extracting bioactive compounds from PFSP, offering promising applications across multiple industries.
RESUMO
One of the major benefits of biomedicine is the use of biocomposites as wound dressings to help improve the treatment of injuries. Therefore, the main objective of this study was to develop and characterize biocomposites based on bacterial cellulose (BC) with different concentrations of collagen and starch and characterize their thermal, morphological, mechanical, physical, and barrier properties. In total, nine samples were produced with fixed amounts of glycerol and BC and variations in the amount of collagen and starch. The water activity (0.400-0.480), water solubility (12.94-69.7%), moisture (10.75-20.60%), thickness (0.04-0.11 mm), water vapor permeability (5.59-14.06 × 10-8 g·mm/m2·h·Pa), grammage (8.91-39.58 g·cm-2), opacity (8.37-36.67 Abs 600 nm·mm-1), elongation (4.81-169.54%), and tensile strength (0.99-16.32 MPa) were evaluated and defined. In addition, scanning electron microscopy showed that adding biopolymers in the cellulose matrix made the surface compact, which also influenced the visual appearance. Thus, the performance of the biocomposites was directly influenced by their composition. The performance of the different samples obtained resulted in them having different potentials for application considering the injury type. This provides a solution for the ineffectiveness of traditional dressings, which is one of the great problems of the biomedical sector.