Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Trop ; 213: 105747, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33188748

RESUMO

The classification of insecticide resistance in sand flies populations is based on concepts and methodologies used to characterize the susceptibility profile in mosquitoes. This can generate erroneous and subjective interpretations since they are biologically different organisms. In this context, the goal of this review is to analyze the works and/or articles that aimed at characterizing the susceptibility of sand flies and describing the methodological parameters, in order to improve future works to estimate more accurately the resistance of sand flies to insecticides. Using keywords that refer to the purpose of this review, scientific studies in English, Spanish and Portuguese published until December 2019 were analyzed. A total of 3481 articles were found in searches in four databases (Pubmed, Scopus, BVS and ScienceDirect) and 61 were selected. The panorama of sand-fly resistance revealed 47 populations of sand flies, of species Phlebotomus papatasi, Ph. argentipes e Sergentomyia shorttii, with confirmed resistance, and 28 populations of species Ph. papatasi, Ph. argentipes, Ph. sergenti e Lutzomyia longipalpis. Of the 61 selected studies, only three studies performed comparisons between field and colony phlebotomines, and all colony populations were less susceptible than field populations to at least one tested insecticide. The lethal doses and lethal times of sand flies are very varied, revealing that there is no specific protocol for assessing the susceptibility of sand flies to insecticides. For a quick and early detection of sand flies' resistance to insecticides, we suggest the use of CDC bottle tests with an SRL to estimate the local Dose and Diagnostic Time. Males and females can be used in the same proportion, but with only female sand flies in the control group. Females with engorged abdomen or pregnant should be avoided in the experiment and, if possible, use the F1 generation of field sand flies, up to 5 days old, or at least 100 sand flies to reduce the influence of age on the susceptibility of the population.


Assuntos
Resistência a Inseticidas , Psychodidae , Animais , Culicidae/efeitos dos fármacos , Feminino , Inseticidas , Masculino , Phlebotomus
2.
Parasit Vectors ; 8: 595, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26572249

RESUMO

BACKGROUND: Over the last few decades, pyrethroid-resistant in Triatoma infestans populations have been reported, mainly on the border between Argentina and Bolivia. Understanding the genetic basis of inheritance mode and heritability of resistance to insecticides under laboratory conditions is crucial for vector management and monitoring of insecticide resistance. Currently, few studies have been performed to characterize the inheritance mode of resistance to pyrethroids in T. infestans; for this reason, the present study aims to characterize the inheritance and heritability of deltamethrin resistance in T. infestans populations from Bolivia with different toxicological profiles. METHODS: Experimental crosses were performed between a susceptible (S) colony and resistant (R) and reduced susceptibility (RS) colonies in both directions (♀ x ♂ and ♂ x ♀), and inheritance mode was determined based on degree of dominance (DO) and effective dominance (D(ML)). In addition, realized heritability (h(2)) was estimated based on a resistant colony, and select pressure was performed for two generations based on the diagnostic dose (10 ng. i. a. /nymph). The F1 progeny of the experimental crosses and the selection were tested by a standard insecticide resistance bioassay. RESULTS: The result for DO and D(ML) (< 1) indicates that resistance is an incompletely dominant character, and inheritance is autosomal, not sex-linked. The LD50 for F1 of ♀S x ♂R and ♂S x ♀R was 0.74 and 3.97, respectively, which is indicative of dilution effect. In the resistant colony, after selection pressure, the value of h(2) was 0.37; thus, the LD50 value increased 2.25-fold (F2) and 26.83-fold (F3) compared with the parental colony. CONCLUSION: The inheritance mode of resistance of T. infestans to deltamethrin, is autosomal and an incompletely dominant character; this is a previously known process, confirmed in the present study on T. infestans populations from Bolivia. The lethal doses (LD50) increase from one generation to another rapidly after selection pressure with deltamethrin. This suggests that resistance is an additive and cumulative factor, mainly in highly structured populations with limited dispersal capacity, such as T. infestans. This phenomenon was demonstrated for the first time for T. infestans in the present study. These results are very important for vector control strategies in problematic areas where high resistance ratios of T. infestans have been reported.


Assuntos
Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Triatoma/efeitos dos fármacos , Animais , Bolívia , Cruzamentos Genéticos , Genes Dominantes , Dose Letal Mediana , Seleção Genética , Triatoma/genética , Testamentos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa