Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 12(1): 228-37, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26463270

RESUMO

We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

2.
J Chem Phys ; 145(10): 104904, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27634276

RESUMO

In the perspective of developing smart hybrid materials with customized features, ferrogels and magnetorheological elastomers allow a synergy of elasticity and magnetism. The interplay between elastic and magnetic properties gives rise to a unique reversible control of the material behavior by applying an external magnetic field. Albeit few works have been performed on the time-dependent properties so far, understanding the dynamic behavior is the key to model many practical situations, e.g., applications as vibration absorbers. Here we present a way to calculate the frequency-dependent elastic moduli based on the decomposition of the linear response to an external stress in normal modes. We use a minimal three-dimensional dipole-spring model to theoretically describe the magnetic and elastic interactions on the mesoscopic level. Specifically, the magnetic particles carry permanent magnetic dipole moments and are spatially arranged in a prescribed way, before they are linked by elastic springs. An external magnetic field aligns the magnetic moments. On the one hand, we study regular lattice-like particle arrangements to compare with previous results in the literature. On the other hand, we calculate the dynamic elastic moduli for irregular, more realistic particle distributions. Our approach measures the tunability of the linear dynamic response as a function of the particle arrangement, the system orientation with respect to the external magnetic field, as well as the magnitude of the magnetic interaction between the particles. The strength of the present approach is that it explicitly connects the relaxational modes of the system with the rheological properties as well as with the internal rearrangement of the particles in the sample, providing new insight into the dynamics of these remarkable materials.

3.
J Chem Phys ; 141(12): 124904, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25273471

RESUMO

One of the central appealing properties of magnetic gels and elastomers is that their elastic moduli can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal magnetic particle distribution on this effect has been outlined and analyzed theoretically. In most cases, however, affine sample deformations are studied and often regular particle arrangements are considered. Here we challenge these two major simplifications by a systematic approach using a minimal dipole-spring model. Starting from different regular lattices, we take into account increasingly randomized structures, until we finally investigate an irregular texture taken from a real experimental sample. On the one hand, we find that the elastic tunability qualitatively depends on the structural properties, here in two spatial dimensions. On the other hand, we demonstrate that the assumption of affine deformations leads to increasingly erroneous results the more realistic the particle distribution becomes. Understanding the consequences of the assumptions made in the modeling process is important on our way to support an improved design of these fascinating materials.

4.
J Phys Condens Matter ; 30(12): 125101, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29474190

RESUMO

Ferrogels and magnetorheological elastomers are composite materials obtained by embedding magnetic particles of mesoscopic size in a crosslinked polymeric matrix. They combine the reversible elastic deformability of polymeric materials with the high responsivity of ferrofluids to external magnetic fields. These materials stand out, for example, for significant magnetostriction as well as a pronounced increase of the elastic moduli in the presence of external magnetic fields. By means of x-ray micro-computed tomography, the position and size of each magnetic particle can be measured with a high degree of accuracy. We here use data extracted from real magnetoelastic samples as input for coarse-grained dipole-spring modeling and calculations to investigate internal restructuring, stiffening, and changes in the normal modes spectrum. More precisely, we assign to each particle a dipole moment proportional to its volume and set a randomized network of springs between them that mimics the behavior of the polymeric elastic matrix. Extending our previously developed methods, we compute the resulting structural changes in the systems as well as the frequency-dependent elastic moduli when magnetic interactions are turned on. Particularly, with increasing magnetization, we observe the formation of chain-like aggregates. Interestingly, the static elastic moduli can first show a slight decrease with growing amplitude of the magnetic interactions, before a pronounced increase appears upon the chain formation. The change of the dynamic moduli with increasing magnetization depends on the frequency and can even feature nonmonotonic behavior. Overall, we demonstrate how theory and experiments can complement each other to learn more about the dynamic behavior of this interesting class of materials.

5.
J Phys Condens Matter ; 27(32): 325105, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26214010

RESUMO

Ferrogels and magnetic elastomers differentiate themselves from other materials by their unique capability of reversibly changing shape and mechanical properties under the influence of an external magnetic field. A crucial issue in the study of these outstanding materials is the interaction between the mesoscopic magnetic particles and the polymer matrix in which they are embedded. Here we analyze interactions between two such particles connected by a polymer chain, a situation representative for particle-crosslinked magnetic gels. To make a first step towards a scale-bridging description of the materials, effective pair potentials for mesoscopic configurational changes are specified using microscopic input obtained from simulations. Furthermore, the impact of the presence of magnetic interactions on the probability distributions and thermodynamic quantities of the system is considered. The resulting mesoscopic model pair potentials can be used to economically model the system on the particle length scales. This first coarse-graining step is important to realize simplified but realistic scale-bridging models for these promising materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa