Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563310

RESUMO

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Esclerose Múltipla , Humanos , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Locos de Características Quantitativas , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Inflamação/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único
2.
Immunity ; 55(3): 542-556.e5, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35151371

RESUMO

Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.


Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , Monócitos/imunologia , Transtornos Respiratórios/imunologia , Sistema Respiratório/imunologia , SARS-CoV-2/fisiologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , COVID-19/complicações , Feminino , Seguimentos , Humanos , Imunidade Celular , Imunoproteínas , Masculino , Pessoa de Meia-Idade , Proteoma , Transtornos Respiratórios/etiologia , Sistema Respiratório/patologia
4.
Nature ; 616(7955): 123-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991119

RESUMO

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Assuntos
Doença da Artéria Coronariana , Multiômica , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Metabolômica/métodos , Fenótipo , Proteômica/métodos , Aprendizado de Máquina , Negro ou Afro-Americano/genética , Asiático/genética , População Europeia/genética , Reino Unido , Conjuntos de Dados como Assunto , Internet , Reprodutibilidade dos Testes , Estudos de Coortes , Proteoma/análise , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Dados Factuais
5.
Nature ; 558(7708): 73-79, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875488

RESUMO

Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.


Assuntos
Proteínas Sanguíneas/genética , Genômica , Proteoma/genética , Feminino , Fator de Crescimento de Hepatócito/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Masculino , Mutação de Sentido Incorreto/genética , Mieloblastina/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Proteínas Proto-Oncogênicas/genética , Locos de Características Quantitativas/genética , Vasculite/genética , alfa 1-Antitripsina/genética
6.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35387486

RESUMO

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Estudos Transversais , Estudo de Associação Genômica Ampla , Humanos , Receptores de Coronavírus , SARS-CoV-2
7.
PLoS Genet ; 14(9): e1007458, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30199539

RESUMO

Chronic inflammation in inflammatory bowel disease (IBD) results from a breakdown of intestinal immune homeostasis and compromise of the intestinal barrier. Genome-wide association studies have identified over 200 genetic loci associated with risk for IBD, but the functional mechanisms of most of these genetic variants remain unknown. Polymorphisms at the TNFSF15 locus, which encodes the TNF superfamily cytokine commonly known as TL1A, are associated with susceptibility to IBD in multiple ethnic groups. In a wide variety of murine models of inflammation including models of IBD, TNFSF15 promotes immunopathology by signaling through its receptor DR3. Such evidence has led to the hypothesis that expression of this lymphocyte costimulatory cytokine increases risk for IBD. In contrast, here we show that the IBD-risk haplotype at TNFSF15 is associated with decreased expression of the gene by peripheral blood monocytes in both healthy volunteers and IBD patients. This association persists under various stimulation conditions at both the RNA and protein levels and is maintained after macrophage differentiation. Utilizing a "recall-by-genotype" bioresource for allele-specific expression measurements in a functional fine-mapping assay, we localize the polymorphism controlling TNFSF15 expression to the regulatory region upstream of the gene. Through a T cell costimulation assay, we demonstrate that genetically regulated TNFSF15 has functional relevance. These findings indicate that genetically enhanced expression of TNFSF15 in specific cell types may confer protection against the development of IBD.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Predisposição Genética para Doença , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto , Alelos , Células Cultivadas , Colite Ulcerativa/sangue , Colite Ulcerativa/imunologia , Doença de Crohn/sangue , Doença de Crohn/imunologia , Feminino , Haplótipos/genética , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Cultura Primária de Células , Locos de Características Quantitativas/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Adulto Jovem
8.
PLoS Genet ; 12(3): e1005908, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27015630

RESUMO

Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Estudos de Associação Genética , Doenças Inflamatórias Intestinais/genética , Locos de Características Quantitativas/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Masculino , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Linfócitos T/imunologia , Linfócitos T/metabolismo
9.
BMC Neurol ; 18(1): 59, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29716529

RESUMO

BACKGROUND: Granulomatosis with polyangiitis (GPA, formerly Wegener's granulomatosis) is a multisystem vasculitis of small- to medium-sized blood vessels. Cranial involvement can result in cranial nerve palsies and, rarely, pituitary infiltration. CASE PRESENTATION: We describe the case of a 32 year-old woman with limited but severe GPA manifesting as progressive cranial nerve palsies and pituitary dysfunction. Our patient initially presented with localised ENT involvement, but despite treatment with methotrexate, she deteriorated. Granulomatous inflammatory tissue around the skull base resulted in cavernous sinus syndrome, facial nerve palsy, palsies of cranial nerves IX-XII (Collet-Sicard syndrome), and the rare complication of cranial diabetes insipidus due to pituitary infiltration. The glossopharyngeal, vagus and accessory nerve palsies resulted in severe dysphagia and she required nasogastric tube feeding. Her neurological deficits substantially improved with treatment including high dose corticosteroid, cyclophosphamide and rituximab. CONCLUSIONS: This case emphasises that serious morbidity can arise from localised cranial Wegener's granulomatosis in the absence of systemic disease. In such cases intensive induction immunosuppression is required. Analysis of previously reported cases of pituitary involvement in GPA reveals that this rare complication predominantly affects female patients.


Assuntos
Doenças dos Nervos Cranianos/etiologia , Diabetes Insípido Neurogênico/etiologia , Granulomatose com Poliangiite/complicações , Adulto , Ciclofosfamida/uso terapêutico , Feminino , Granulomatose com Poliangiite/tratamento farmacológico , Humanos , Metotrexato/uso terapêutico , Rituximab/uso terapêutico
10.
Bioinformatics ; 32(4): 523-32, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26504141

RESUMO

MOTIVATION: Analysing the joint association between a large set of responses and predictors is a fundamental statistical task in integrative genomics, exemplified by numerous expression Quantitative Trait Loci (eQTL) studies. Of particular interest are the so-called ': hotspots ': , important genetic variants that regulate the expression of many genes. Recently, attention has focussed on whether eQTLs are common to several tissues, cell-types or, more generally, conditions or whether they are specific to a particular condition. RESULTS: We have implemented MT-HESS, a Bayesian hierarchical model that analyses the association between a large set of predictors, e.g. SNPs, and many responses, e.g. gene expression, in multiple tissues, cells or conditions. Our Bayesian sparse regression algorithm goes beyond ': one-at-a-time ': association tests between SNPs and responses and uses a fully multivariate model search across all linear combinations of SNPs, coupled with a model of the correlation between condition/tissue-specific responses. In addition, we use a hierarchical structure to leverage shared information across different genes, thus improving the detection of hotspots. We show the increase of power resulting from our new approach in an extensive simulation study. Our analysis of two case studies highlights new hotspots that would remain undetected by standard approaches and shows how greater prediction power can be achieved when several tissues are jointly considered. AVAILABILITY AND IMPLEMENTATION: C[Formula: see text] source code and documentation including compilation instructions are available under GNU licence at http://www.mrc-bsu.cam.ac.uk/software/.


Assuntos
Algoritmos , Teorema de Bayes , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação/genética , Doenças Inflamatórias Intestinais/genética , Locos de Características Quantitativas/genética , Software , Animais , Diabetes Mellitus Tipo 1/genética , Genômica/métodos , Humanos , Modelos Teóricos , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único/genética , Linguagens de Programação , Ratos , Distribuição Tecidual
11.
BMC Genomics ; 15: 649, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25091430

RESUMO

BACKGROUND: Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. RESULTS: Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. CONCLUSIONS: Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/genética , Estatística como Assunto/métodos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Estudos de Casos e Controles , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Leucócitos/metabolismo , Especificidade de Órgãos
12.
Clin Exp Rheumatol ; 32(3 Suppl 82): S11-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24093733

RESUMO

OBJECTIVES: We analysed a large cohort of patients with Takayasu arteritis, seeking robust clinical evidence for prolonged responses to tumour necrosis factor-α (TNF-α) and interleukin-6 receptor (IL-6R) antagonists in severe refractory disease. METHODS: Case notes from ninety-eight patients with Takayasu arteritis were retrospectively reviewed. Drug treatment, laboratory and serial non-invasive imaging data were analysed, and the Indian Takayasu arteritis activity (ITAS) and damage scores (TADs) calculated. RESULTS: Nine patients were treated with biologic therapies. All had previously received high dose prednisolone and ≥1 conventional immunosuppressant. Five patients had failed cyclophosphamide. The patients prescribed biologics had more extensive arterial injury than the remainder of the cohort and persistent active disease (ITAS range 2-9, CRP 12-206 mg/L, TADs 3--1). Eight patients were prescribed anti-TNF-α therapy, three IL-6R blockade. The mean duration of anti-TNF-α treatment was 42 months (maximum 8 years). One patient developed new arterial stenoses while receiving anti-TNF-α and subsequently achieved disease remission with tocilizumab. Two patients have now demonstrated sustained responses to IL-6R inhibition at 19 and 20 months. Following introduction of biologic therapy, serial non-invasive imaging has revealed no significant progression in arterial injury. A significant fall in CRP (p<0.01), prednisolone dose (p<0.01) and ITAS (p<0.01) was observed, with no increase in TADs. CONCLUSIONS: We report for the first time sustained responses to both anti-TNF-α and IL6R antagonists in refractory Takayasu arteritis. As 5/9 patients were cyclophosphamide non-responders, we propose that biologics should now be considered ahead of cyclophosphamide in these young patients.


Assuntos
Anticorpos Monoclonais Humanizados , Arteriopatias Oclusivas/prevenção & controle , Receptores de Interleucina-6/antagonistas & inibidores , Arterite de Takayasu , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adolescente , Adulto , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Arteriopatias Oclusivas/etiologia , Arteriopatias Oclusivas/imunologia , Terapia Biológica/métodos , Ciclofosfamida/administração & dosagem , Ciclofosfamida/efeitos adversos , Progressão da Doença , Monitoramento de Medicamentos , Resistência a Medicamentos , Feminino , Seguimentos , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Angiografia por Ressonância Magnética/métodos , Masculino , Prednisona/administração & dosagem , Prednisona/efeitos adversos , Estudos Retrospectivos , Índice de Gravidade de Doença , Arterite de Takayasu/complicações , Arterite de Takayasu/tratamento farmacológico , Arterite de Takayasu/epidemiologia , Arterite de Takayasu/imunologia , Arterite de Takayasu/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Reino Unido/epidemiologia
13.
Nat Commun ; 15(1): 744, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272877

RESUMO

The pathobiology of respiratory failure in COVID-19 consists of a complex interplay between viral cytopathic effects and a dysregulated host immune response. In critically ill patients, imatinib treatment demonstrated potential for reducing invasive ventilation duration and mortality. Here, we perform longitudinal profiling of 6385 plasma proteins in 318 hospitalised patients to investigate the biological processes involved in critical COVID-19, and assess the effects of imatinib treatment. Nine proteins measured at hospital admission accurately predict critical illness development. Next to dysregulation of inflammation, critical illness is characterised by pathways involving cellular adhesion, extracellular matrix turnover and tissue remodelling. Imatinib treatment attenuates protein perturbations associated with inflammation and extracellular matrix turnover. These proteomic alterations are contextualised using external pulmonary RNA-sequencing data of deceased COVID-19 patients and imatinib-treated Syrian hamsters. Together, we show that alveolar capillary barrier disruption in critical COVID-19 is reflected in the plasma proteome, and is attenuated with imatinib treatment. This study comprises a secondary analysis of both clinical data and plasma samples derived from a clinical trial that was registered with the EU Clinical Trials Register (EudraCT 2020-001236-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001236-10/NL ) and Netherlands Trial Register (NL8491, https://www.trialregister.nl/trial/8491 ).


Assuntos
COVID-19 , Humanos , Estado Terminal , SARS-CoV-2 , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteômica , Inflamação , Biomarcadores
14.
Nat Commun ; 14(1): 5023, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596262

RESUMO

Blood cells contain functionally important intracellular structures, such as granules, critical to immunity and thrombosis. Quantitative variation in these structures has not been subjected previously to large-scale genetic analysis. We perform genome-wide association studies of 63 flow-cytometry derived cellular phenotypes-including cell-type specific measures of granularity, nucleic acid content and reactivity-in 41,515 participants in the INTERVAL study. We identify 2172 distinct variant-trait associations, including associations near genes coding for proteins in organelles implicated in inflammatory and thrombotic diseases. By integrating with epigenetic data we show that many intracellular structures are likely to be determined in immature precursor cells. By integrating with proteomic data we identify the transcription factor FOG2 as an early regulator of platelet formation and α-granularity. Finally, we show that colocalisation of our associations with disease risk signals can suggest aetiological cell-types-variants in IL2RA and ITGA4 respectively mirror the known effects of daclizumab in multiple sclerosis and vedolizumab in inflammatory bowel disease.


Assuntos
Estudo de Associação Genômica Ampla , Proteômica , Microscopia , Fatores de Transcrição , Causalidade
15.
medRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824751

RESUMO

Understanding the genetic basis of neuro-related proteins is essential for dissecting the disease etiology of neuropsychiatric disorders and other complex traits and diseases. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-reiated proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-reiated traits as well as complex diseases such as hypertension, high cholesterol, immune-related disorders, and psychiatric disorders. Integrating with established drug information, we validated 13 combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets for diseases and comorbidities. This consortium effort provides a large-scale proteogenomic resource for biomedical research.

16.
Res Sq ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034613

RESUMO

Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioral traits and the disease etiology of neuropsychiatric disorders. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-related proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-related traits such as sleeping, smoking, feelings, alcohol intake, mental health, and psychiatric disorders. Integrating with established drug information, we validated 13 out of 13 matched combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets. This consortium effort provides a large-scale proteogenomic resource for biomedical research on human behaviors and other neuro-related phenotypes.

17.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36697134

RESUMO

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Assuntos
Aterosclerose , Arterite de Células Gigantes , Infarto do Miocárdio , Arterite de Takayasu , Humanos , Receptores de Somatostatina , Estudos Prospectivos , Fluordesoxiglucose F18 , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Vasos Coronários/patologia , Aterosclerose/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacologia
18.
Nat Commun ; 13(1): 7775, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522333

RESUMO

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we perform longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identify transcriptomic and proteomic signatures of COVID-19 severity, and find distinct temporal molecular profiles in patients with severe disease. Supervised learning reveals that the plasma proteome is a superior indicator of clinical severity than the PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, is associated with a more severe clinical course. We observe that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19.


Assuntos
COVID-19 , Convalescença , Trombose , Humanos , Multiômica , SARS-CoV-2 , Leucócitos Mononucleares , Proteômica , Proteínas de Membrana
19.
Elife ; 112022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916366

RESUMO

Growth differentiation factor-15 (GDF15) is a stress response cytokine that is elevated in several cardiometabolic diseases and has attracted interest as a potential therapeutic target. To further explore the association of GDF15 with human disease, we conducted a broad study into the phenotypic and genetic correlates of GDF15 concentration in up to 14,099 individuals. Assessment of 772 traits across 6610 participants in FINRISK identified associations of GDF15 concentration with a range of phenotypes including all-cause mortality, cardiometabolic disease, respiratory diseases and psychiatric disorders, as well as inflammatory markers. A meta-analysis of genome-wide association studies (GWAS) of GDF15 concentration across three different assay platforms (n=14,099) confirmed significant heterogeneity due to a common missense variant (rs1058587; p.H202D) in GDF15, potentially due to epitope-binding artefacts. After conditioning on rs1058587, statistical fine mapping identified four independent putative causal signals at the locus. Mendelian randomisation (MR) analysis found evidence of a causal relationship between GDF15 concentration and high-density lipoprotein (HDL) but not body mass index (BMI). Using reverse MR, we identified a potential causal association of BMI on GDF15 (IVW pFDR = 0.0040). Taken together, our data derived from human population cohorts do not support a role for moderately elevated GDF15 concentrations as a causal factor in human cardiometabolic disease but support its role as a biomarker of metabolic stress.


Assuntos
Doenças Cardiovasculares , Biomarcadores , Índice de Massa Corporal , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana
20.
Nat Commun ; 13(1): 6143, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253349

RESUMO

Stroke is the second leading cause of death with substantial unmet therapeutic needs. To identify potential stroke therapeutic targets, we estimate the causal effects of 308 plasma proteins on stroke outcomes in a two-sample Mendelian randomization framework and assess mediation effects by stroke risk factors. We find associations between genetically predicted plasma levels of six proteins and stroke (P ≤ 1.62 × 10-4). The genetic associations with stroke colocalize (Posterior Probability >0.7) with the genetic associations of four proteins (TFPI, TMPRSS5, CD6, CD40). Mendelian randomization supports atrial fibrillation, body mass index, smoking, blood pressure, white matter hyperintensities and type 2 diabetes as stroke risk factors (P ≤ 0.0071). Body mass index, white matter hyperintensity and atrial fibrillation appear to mediate the TFPI, IL6RA, TMPRSS5 associations with stroke. Furthermore, thirty-six proteins are associated with one or more of these risk factors using Mendelian randomization. Our results highlight causal pathways and potential therapeutic targets for stroke.


Assuntos
Fibrilação Atrial , Diabetes Mellitus Tipo 2 , Acidente Vascular Cerebral , Fibrilação Atrial/genética , Proteínas Sanguíneas/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Proteoma/genética , Fatores de Risco , Acidente Vascular Cerebral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa