Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Ecotoxicol Environ Saf ; 279: 116510, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810284

RESUMO

Microplastics and organic micropollutants are two emerging contaminants that interact with each other in environmental and engineered systems. Sorption of organic micropollutants, such as pharmaceuticals, pesticides and industrial compounds, to microplastics can modify their bioavailability and biodegradation. The present study investigated the capacity of ultra-high density polyethylene particles (125 µm in diameter), before and after aging, to sorb 21 organic micropollutants at different environmentally relevant concentration. Furthermore, the biodegradation of these organic micropollutants by a biofilm microbial community growing on the microplastic surface was compared with the biodegradation by a microbial community originating from activated sludge. Among all tested organic micropollutants, propranolol (70%), trimethoprim (25%) and sotalol (15%) were sorbed in the presence of polyethylene particles. Growth of a biofilm on the polyethylene particles had a beneficial effect on the sorption of bromoxynil, caffeine and chloridazon and on the biodegradation of irbesartan, atenolol and benzotriazole. On the other hand, the biofilm limited the sorption of trimethoprim, propranolol, sotalol and benzotriazole and the biodegradation of 2,4-D. These results showed that ultra-high density polyethylene particles can affect both in a positive and negative way for the abiotic and biotic removal of organic micropollutants in wastewater. This project highlights the need for further investigation regarding the interaction between microplastics and organic micropollutants in the aquatic environment.


Assuntos
Biodegradação Ambiental , Biofilmes , Microplásticos , Polietileno , Propranolol , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Polietileno/química , Adsorção , Trimetoprima , Atenolol , Triazóis/química , Esgotos/química , Esgotos/microbiologia
2.
Part Fibre Toxicol ; 17(1): 11, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156294

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) are used extensively in various consumer products because of their antimicrobial potential. This requires insight in their potential hazards and risks including adverse effects during pregnancy on the developing fetus. Using a combination of the BeWo b30 placental transport model and the mouse embryonic stem cell test (EST), we investigated the capability of pristine AgNPs with different surface chemistries and aged AgNPs (silver sulfide (Ag2S) NPs) to cross the placental barrier and induce developmental toxicity. The uptake/association and transport of AgNPs through the BeWo b30 was characterized using ICP-MS and single particle (sp)ICP-MS at different time points. The developmental toxicity of the AgNPs was investigated by characterizing their potential to inhibit the differentiation of mouse embryonic stem cells (mESCs) into beating cardiomyocytes. RESULTS: The AgNPs are able to cross the BeWo b30 cell layer to a level that was limited and dependent on their surface chemistry. In the EST, no in vitro developmental toxicity was observed as the effects on differentiation of the mESCs were only detected at cytotoxic concentrations. The aged AgNPs were significantly less cytotoxic, less bioavailable and did not induce developmental toxicity. CONCLUSIONS: Pristine AgNPs are capable to cross the placental barrier to an extent that is influenced by their surface chemistry and that this transport is likely low but not negligible. Next to that, the tested AgNPs have low intrinsic potencies for developmental toxicity. The combination of the BeWo b30 model with the EST is of added value in developmental toxicity screening and prioritization of AgNPs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Placenta/efeitos dos fármacos , Compostos de Prata/toxicidade , Prata/toxicidade , Animais , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Nanopartículas Metálicas/química , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Tamanho da Partícula , Placenta/metabolismo , Gravidez , Prata/química , Compostos de Prata/química , Propriedades de Superfície
3.
Soft Matter ; 13(33): 5580-5588, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28730206

RESUMO

Giant Unilamellar Vesicles (GUVs) prepared from phospholipids are becoming popular membrane model systems for use in biophysical studies. The quality, size and yield of GUVs depend on the preparation method used to obtain them. In this study, hydrogels consisting of dextran polymers crosslinked by poly(ethylene glycol) (DexPEG) were used as hydrophilic frameworks for the preparation of vesicle suspensions under physiological ionic strength conditions. A comparative study was conducted using hydrogels with varied physicochemical properties to evaluate their performance for GUV production. The prepared GUVs were quantified by flow cytometry using the Coulter Principle to determine the yield and size distribution. We find that hydrogels of lower mechanical strength, increased swellability and decreased lipid interaction favour GUV production, while their resulting size is determined by the surface roughness of the hydrogel film. Moreover, we embedded polymersomes into the crosslinked hydrogel network, creating a DexPEG - polymersome hybrid film. The re-hydration of lipids on those hybrid substrates led to the production of GUVs and the efficient encapsulation of polymersomes in the lumen of GUVs.

4.
Anal Bioanal Chem ; 408(24): 6679-91, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27469116

RESUMO

Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.

5.
Environ Sci Technol ; 49(15): 8932-47, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26130306

RESUMO

High concentrations of plastic debris have been observed in the oceans. Much of the recent concern has focused on microplastics in the marine environment. Recent studies of the size distribution of the plastic debris suggested that continued fragmenting of microplastics into nanosized particles may occur. In this review we assess the current literature on the occurrence of environmentally released micro- and nanoplastics in the human food production chain and their potential health impact. The currently used analytical techniques introduce a great bias in the knowledge, since they are only able to detect plastic particles well above the nanorange. We discuss the potential use of the very sensitive analytical techniques that have been developed for the detection and quantification of engineered nanoparticles. We recognize three possible toxic effects of plastic particles: first due to the plastic particles themselves, second to the release of persistent organic pollutant adsorbed to the plastics, and third to the leaching of additives of the plastics. The limited data on microplastics in foods do not predict adverse effect of these pollutants or additives. Potential toxic effects of microplastic particles will be confined to the gut. The potential human toxicity of nanoplastics is poorly studied. Based on our experiences in nanotoxicology we prioritized future research questions.


Assuntos
Poluentes Ambientais/toxicidade , Cadeia Alimentar , Saúde , Nanopartículas/toxicidade , Plásticos/toxicidade , Humanos , Tamanho da Partícula
6.
Arch Toxicol ; 89(9): 1469-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25975987

RESUMO

The increasing use of nanoparticles in products likely results in increased exposure of both workers and consumers. Because of their small size, there are concerns that nanoparticles unintentionally cross the barriers of the human body. Several in vivo rodent studies show that, dependent on the exposure route, time, and concentration, and their characteristics, nanoparticles can cross the lung, gut, skin, and placental barrier. This review aims to evaluate the performance of in vitro models that mimic the barriers of the human body, with a focus on the lung, gut, skin, and placental barrier. For these barriers, in vitro models of varying complexity are available, ranging from single-cell-type monolayer to multi-cell (3D) models. Only a few studies are available that allow comparison of the in vitro translocation to in vivo data. This situation could change since the availability of analytical detection techniques is no longer a limiting factor for this comparison. We conclude that to further develop in vitro models to be used in risk assessment, the current strategy to improve the models to more closely mimic the human situation by using co-cultures of different cell types and microfluidic approaches to better control the tissue microenvironments are essential. At the current state of the art, the in vitro models do not yet allow prediction of absolute transfer rates but they do support the definition of relative transfer rates and can thus help to reduce animal testing by setting priorities for subsequent in vivo testing.


Assuntos
Alternativas aos Testes com Animais , Modelos Biológicos , Nanopartículas/metabolismo , Animais , Técnicas de Cocultura , Humanos , Técnicas Analíticas Microfluídicas/métodos , Roedores , Distribuição Tecidual
7.
Regul Toxicol Pharmacol ; 73(1): 463-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169479

RESUMO

Nanotechnology has the potential to innovate the agricultural, feed and food sectors (hereinafter referred to as agri/feed/food). Applications that are marketed already include nano-encapsulated agrochemicals or nutrients, antimicrobial nanoparticles and active and intelligent food packaging. Many nano-enabled products are currently under research and development, and may enter the market in the near future. As for any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Several countries all over the world have been active in examining the appropriateness of their regulatory frameworks for dealing with nanotechnologies. As a consequence of this, different approaches have been taken in regulating nano-based products in agri/feed/food. The EU, along with Switzerland, were identified to be the only world region where nano-specific provisions have been incorporated in existing legislation, while in other regions nanomaterials are regulated more implicitly by mainly building on guidance for industry. This paper presents an overview and discusses the state of the art of different regulatory measures for nanomaterials in agri/feed/food, including legislation and guidance for safety assessment in EU and non-EU countries.


Assuntos
Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Alimentos/normas , Legislação sobre Alimentos/normas , Nanoestruturas/normas , Nanotecnologia/legislação & jurisprudência , Setor Privado/legislação & jurisprudência , Agricultura/legislação & jurisprudência , Agroquímicos/normas , Animais , Anti-Infecciosos/normas , União Europeia , Embalagem de Alimentos/legislação & jurisprudência , Humanos , Medição de Risco , Segurança/legislação & jurisprudência
8.
Angew Chem Int Ed Engl ; 54(33): 9614-7, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26089190

RESUMO

External small-molecule triggers were used to reversibly control dynamic protein-ligand interactions in giant vesicles. An alcohol dehydrogenase was employed to increase or decrease the interior pH upon conversion of two different small-molecule substrates, thereby modulating the pH-sensitive interaction between a Ni-NTA ligand on the vesicle membrane and an oligohistidine-tagged protein in the lumen. By alternating the small-molecule substrates the interaction could be reversed.


Assuntos
Células Artificiais/metabolismo , Lipossomos/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas/metabolismo , Álcool Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Ligantes , Microscopia Confocal , Microscopia de Fluorescência , Ligação Proteica
9.
Anal Bioanal Chem ; 406(16): 3875-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24390462

RESUMO

The application of nanomaterials is leading to innovative developments in industry, agriculture, consumer products, and food and related sectors. However, due to the special properties of these materials there are concerns about their safety, especially because of our limited knowledge of human health effects and the fact that constantly new nanomaterials and applications thereof are being produced. The development of analytical techniques is a key element to understand the benefits as well as the risks of the application of such materials. In this study, a method is developed and validated for sizing and quantifying nano-silver in chicken meat using single particle inductive coupled plasma mass spectrometry (ICP-MS). Samples are processed using an enzymatic digestion followed by dilution of the digest and instrumental analysis of the diluted digest using single particle ICP-MS. Validation of the method in the concentration of 5-25 mg/kg 60-nm silver nanoparticles showed good performance with respect to trueness (98-99% for size, 91-101% for concentration), repeatability (<2% for size, <11% for concentration), and reproducibility (<6% for size, <16% for concentration). The response of the method is linear, and a detection limit as low as 0.1 mg/kg can be obtained. Additional experiments showed that the method is robust and that digests are stable for 3 weeks at 4 °C. Once diluted for single particle ICP-MS analysis, the stability is limited. Finally, it was shown that nano-silver in chicken meat is not stable. Silver nanoparticles dissolved and were transformed into silver sulfide. While this has implications for the form in which nano-silver will be present in real-life meat samples, the developed method will be able to determine the presence and quantity of nanoparticle silver in such samples.


Assuntos
Espectrometria de Massas/métodos , Carne/análise , Nanopartículas Metálicas/química , Prata/química , Animais , Galinhas , Contaminação de Alimentos/análise , Espectrometria de Massas/instrumentação , Tamanho da Partícula
10.
Part Fibre Toxicol ; 11: 8, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24507464

RESUMO

BACKGROUND: Synthetic Amorphous Silica (SAS) is commonly used in food and drugs. Recently, a consumer intake of silica from food was estimated at 9.4 mg/kg bw/day, of which 1.8 mg/kg bw/day was estimated to be in the nano-size range. Food products containing SAS have been shown to contain silica in the nanometer size range (i.e. 5-200 nm) up to 43% of the total silica content. Concerns have been raised about the possible adverse effects of chronic exposure to nanostructured silica. METHODS: Rats were orally exposed to 100, 1000 or 2500 mg/kg bw/day of SAS, or to 100, 500 or 1000 mg/kg bw/day of NM-202 (a representative nanostructured silica for OECD testing) for 28 days, or to the highest dose of SAS or NM-202 for 84 days. RESULTS: SAS and NM-202 were extensively characterized as pristine materials, but also in the feed matrix and gut content of the animals, and after in vitro digestion. The latter indicated that the intestinal content of the mid/high-dose groups had stronger gel-like properties than the low-dose groups, implying low gelation and high bioaccessibility of silica in the human intestine at realistic consumer exposure levels. Exposure to SAS or NM-202 did not result in clearly elevated tissue silica levels after 28-days of exposure. However, after 84-days of exposure to SAS, but not to NM-202, silica accumulated in the spleen. Biochemical and immunological markers in blood and isolated cells did not indicate toxicity, but histopathological analysis, showed an increased incidence of liver fibrosis after 84-days of exposure, which only reached significance in the NM-202 treated animals. This observation was accompanied by a moderate, but significant increase in the expression of fibrosis-related genes in liver samples. CONCLUSIONS: Although only few adverse effects were observed, additional studies are warranted to further evaluate the biological relevance of observed fibrosis in liver and possible accumulation of silica in the spleen in the NM-202 and SAS exposed animals respectively. In these studies, dose-effect relations should be studied at lower dosages, more representative of the current exposure of consumers, since only the highest dosages were used for the present 84-day exposure study.


Assuntos
Nanoestruturas/toxicidade , Dióxido de Silício/toxicidade , Animais , Citocinas/metabolismo , Elasticidade , Exposição por Inalação , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Masculino , Espectrometria de Massas , Tamanho da Partícula , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/farmacocinética , Espectrofotometria Infravermelho , Baço/efeitos dos fármacos , Baço/imunologia , Distribuição Tecidual , Transcriptoma/efeitos dos fármacos , Viscosidade
11.
Angew Chem Int Ed Engl ; 53(1): 146-50, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24254810

RESUMO

Enzyme-filled polystyrene-b-poly(3-(isocyano-L-alanyl-aminoethyl)thiophene) (PS-b-PIAT) nanoreactors are encapsulated together with free enzymes and substrates in a larger polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) polymersome, forming a multicompartmentalized structure, which shows structural resemblance to the cell and its organelles. An original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments.


Assuntos
Polímeros/química , Poliestirenos/química , Catálise
12.
Anal Bioanal Chem ; 405(4): 1181-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23180077

RESUMO

This paper describes the characterisation of liposome-type nanoparticles (NPs) dispersed in a beverage matrix. Characterisation is based on a two-step procedure: first, liposomes are separated on the basis of size in the nanometre range by use of hydrodynamic chromatography (HDC); second, chemical characterisation is performed by use of MALDI-TOF mass spectrometry (MS). Characterisation of three types of Coatsome liposome, a commercially available type of empty liposome, was investigated. All three liposome types, Coatsome A = anionic, N = neutral, and C = cationic, gave single peaks in HDC, reflecting diameters of 153, 187, and 205 nm, respectively. Subsequent MALDI-TOF MS in positive mode furnished major signals at m/z = 734.5 ([M + H](+) adduct) and m/z = 756.6 ([M + Na](+) adduct) of L-(α)-dipalmitoylphosphatidylcholine (DPPC) monomer and dimeric adducts at m/z = 1468.1 and m/z = 1490.1, respectively. MALDI-TOF MS in negative mode gave a signal at m/z = 721.3 ([M - H](-) adduct) of L-(α)-dipalmitoylphosphatidylglycerol (DPPG), except for Coatsome C which lacks this phospholipid. After HDC separation of Coatsome A NPs the major DPPC and DPPG signals can be detected in the expected fractions by use of MALDI-TOF MS in positive and negative modes, respectively. Validation of the analytical strategy revealed linearity (R(2) > 0.99), repeatability (relative standard deviation <10 %), and reproducibility (relative standard deviation between days <10 %) were good, recovery was 61 ± 5 %, and the limit of quantification was 1 mg mL(-1) in this matrix. With 4 mg Coatsome A mL(-1) 20 out of 20 samples furnished the 734.5 and 756.6 signals typical of DPPC in MALDI-TOF MS characterisation.


Assuntos
Bebidas/análise , Cromatografia Líquida/métodos , Nanopartículas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lipossomos/análise
13.
Chemosphere ; 312(Pt 1): 137175, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370761

RESUMO

In 2019, 368 mln tonnes of plastics were produced worldwide. Likewise, the textiles and apparel industry, with an annual revenue of 1.3 trillion USD in 2016, is one of the largest fast-growing industries. Sustainable use of resources forces the development of new plastic and textile recycling methods and implementation of the circular economy (reduce, reuse and recycle) concept. However, circular use of plastics and textiles could lead to the accumulation of a variety of contaminants in the recycled product. This paper first reviewed the origin and nature of potential hazards that arise from recycling processes of plastics and textiles. Next, we reviewed current analytical methods and safety assessment frameworks that could be adapted to detect and identify these contaminants. Various contaminants can end up in recycled plastic. Phthalates are formed during waste collection while flame retardants and heavy metals are introduced during the recycling process. Contaminants linked to textile recycling include; detergents, resistant coatings, flame retardants, plastics coatings, antibacterial and anti-mould agents, pesticides, dyes, volatile organic compounds and nanomaterials. However, information is limited and further research is required. Various techniques are available that have detected various compounds, However, standards have to be developed in order to identify these compounds. Furthermore, the techniques mentioned in this review cover a wide range of organic chemicals, but studies covering potential inorganic contamination in recycled materials are still missing. Finally, approaches like TTC and CoMSAS for risk assessment should be used for recycled plastic and textile materials.


Assuntos
Retardadores de Chama , Plásticos , Plásticos/química , Reciclagem/métodos , Têxteis , Indústrias
14.
J Am Chem Soc ; 133(40): 16235-42, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21879732

RESUMO

Progress in understanding signal transduction and metabolic pathways is hampered by a shortage of suitable sensors for tracking metabolites, second messengers, and neurotransmitters in living cells. Here we introduce a class of rationally designed semisynthetic fluorescent sensor proteins, called Snifits, for measuring metabolite concentrations on the cell surface of mammalian cells. Functional Snifits are assembled on living cells through two selective chemical labeling reactions of a genetically encoded protein scaffold. Our best Snifit displayed fluorescence intensity ratio changes on living cells significantly higher than any previously reported cell-surface-targeted fluorescent sensor protein. This work establishes a generally applicable and rational strategy for the generation of cell-surface-targeted fluorescent sensor proteins for metabolites of interest.


Assuntos
Técnicas Biossensoriais/métodos , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Animais , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Transfecção
15.
Nanotoxicology ; 15(7): 905-933, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34074217

RESUMO

Synthetic amorphous silica (SAS) is applied in food products as food additive E 551. It consists of constituent amorphous silicon dioxide (SiO2) nanoparticles that form aggregates and agglomerates. We reviewed recent oral toxicity studies with SAS. Some of those report tissue concentrations of silicon (Si). The results of those studies were compared with recently determined tissue concentrations of Si (and Si-particles) in human postmortem tissues. We noticed inconsistent results of the various toxicity studies regarding toxicity and reported tissue concentrations, which hamper the risk assessment of SAS. A broad range of Si concentrations is reported in control animals in toxicity studies. The Si concentrations found in human postmortem tissues fall within this range. On the other hand, the mean concentration found in human liver is higher than the reported concentrations causing liver effects in some animal toxicity studies after oral exposure to SAS. Also higher liver concentrations are observed in other, negative animal studies. Those inconsistencies could be caused by the presence of other Si-containing chemical substances or particles (which potentially also includes background SAS) and/or different sample preparation and analytical techniques that were used. Other factors which could explain the inconsistencies in outcome between the toxicity studies are the distinct SAS used and different dosing regimes, such as way of administration (dietary, via drinking water, oral gavage), dispersion of SAS and dose. More research is needed to address these issues and to perform a proper risk assessment for SAS in food. The current review will help to progress research on the toxicity of SAS and the associated risk assessment.


Assuntos
Nanopartículas , Dióxido de Silício , Animais , Aditivos Alimentares , Humanos , Fígado , Nanopartículas/toxicidade , Medição de Risco , Dióxido de Silício/toxicidade
16.
Anal Bioanal Chem ; 397(7): 2841-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20379812

RESUMO

There is an increasing interest in screening methods for quick and sensitive analysis of various classes of veterinary drugs with limited sample pre-treatment. Turbulent flow chromatography in combination with tandem mass spectrometry has been applied for the first time as an efficient screening method in routine analysis of milk samples. Eight veterinary drugs, belonging to seven different classes were selected for this study. After developing and optimising the method, parameters such as linearity, repeatability, matrix effects and carry-over were studied. The screening method was then tested in the routine analysis of 12 raw milk samples. Even without internal standards, the linearity of the method was found to be good in the concentration range of 50 to 500 microg/L. Regarding repeatability, RSDs below 12% were obtained for all analytes, with only a few exceptions. The limits of detection were between 0.1 and 5.2 microg/L, far below the maximum residue levels for milk set by the EU regulations. While matrix effects--ion suppression or enhancement--are obtained for all the analytes the method has proved to be useful for screening purposes because of its sensitivity, linearity and repeatability. Furthermore, when performing the routine analysis of the raw milk samples, no false positive or negative results were obtained.


Assuntos
Cromatografia/métodos , Leite/química , Espectrometria de Massas em Tandem/métodos , Drogas Veterinárias/análise , Animais , Automação , Bovinos , Resíduos de Drogas/análise
17.
Micromachines (Basel) ; 11(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796583

RESUMO

The use of drones in combination with remote sensors have displayed increasing interest over the last years due to its potential to automate monitoring processes. In this study, a novel approach of a small flying e-nose is proposed by assembling a set of AlphaSense electrochemical-sensors to a DJI Matrix 100 unmanned aerial vehicle (UAV). The system was tested on an outdoor field with a source of NO2. Field tests were conducted in a 100 m2 area on two dates with different wind speed levels varying from low (0.0-2.9m/s) to high (2.1-5.3m/s), two flight patterns zigzag and spiral and at three altitudes (3, 6 and 9 m). The objective of this study is to evaluate the sensors responsiveness and performance when subject to distinct flying conditions. A Wilcoxon rank-sum test showed significant difference between flight patterns only under High Wind conditions, with Spiral flights being slightly superior than Zigzag. With the aim of contributing to other studies in the same field, the data used in this analysis will be shared with the scientific community.

18.
Nanotoxicology ; 14(7): 985-1007, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619159

RESUMO

Recent studies reported adverse liver effects and intestinal tumor formation after oral exposure to titanium dioxide (TiO2). Other oral toxicological studies, however, observed no effects on liver and intestine, despite prolonged exposure and/or high doses. In the present assessment, we aimed to better understand whether TiO2 can induce such effects at conditions relevant for humans. Therefore, we focused not only on the clinical and histopathological observations, but also used Adverse Outcome Pathways (AOPs) to consider earlier steps (Key Events). In addition, aiming for a more accurate risk assessment, the available information on organ concentrations of Ti (resulting from exposure to TiO2) from oral animal studies was compared to recently reported concentrations found in human postmortem organs. The overview obtained with the AOP approach indicates that TiO2 can trigger a number of key events in liver and intestine: Reactive Oxygen Species (ROS) generation, induction of oxidative stress and inflammation. TiO2 seems to be able to exert these early effects in animal studies at Ti liver concentrations that are only a factor of 30 and 6 times higher than the median and highest liver concentration found in humans, respectively. This confirms earlier conclusions that adverse effects on the liver in humans as a result of (oral) TiO2 exposure cannot be excluded. Data for comparison with Ti levels in human intestinal tissue, spleen and kidney with effect concentrations were too limited to draw firm conclusions. The Ti levels, though, are similar or higher than those found in liver, suggesting these tissues may be relevant too.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas/toxicidade , Baço/efeitos dos fármacos , Titânio/toxicidade , Administração Oral , Animais , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Aditivos Alimentares/toxicidade , Humanos , Inflamação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Titânio/química , Titânio/metabolismo
19.
Nanotoxicology ; 14(1): 111-126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31648587

RESUMO

Nanomaterials, especially silver nanoparticles (AgNPs), are used in a broad range of products owing to their antimicrobial potential. Oral ingestion is considered as a main exposure route to AgNPs. This study aimed to investigate the impact of the biochemical conditions within the human digestive tract on the intestinal fate of AgNPs across an intestinal in vitro model of differentiated Caco-2/HT29-MTX cells. The co-culture model was exposed to different concentrations (250-2500 µg/L) of pristine and in vitro digested (IVD) AgNPs and silver nitrate for 24 h. ICP-MS and spICP-MS measurements were performed for quantification of total Ag and AgNPs. The AgNPs size distribution, dissolution, and particle concentration (mass- and number-based) were characterized in the cell fraction and in the apical and basolateral compartments of the monolayer cultures. A significant fraction of the AgNPs dissolved (86-92% and 48-70%) during the digestion. Cellular exposure to increasing concentrations of pristine or IVD AgNPs resulted in a concentration dependent increase of total Ag and AgNPs content in the cellular fractions. The cellular concentrations were significantly lower following exposure to IVD AgNPs compared to the pristine AgNPs. Transport of silver as either total Ag or AgNPs was limited (<0.1%) following exposure to pristine and IVD AgNPs. We conclude that the surface chemistry of AgNPs and their digestion influence their dissolution properties, uptake/association with the Caco-2/HT29-MTX monolayer. This highlights the need to take in vitro digestion into account when studying nanoparticle toxicokinetics and toxicodynamics in cellular in vitro model systems.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Trato Gastrointestinal/metabolismo , Células HT29 , Humanos , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Prata/metabolismo , Nitrato de Prata/química , Nitrato de Prata/metabolismo , Nitrato de Prata/toxicidade , Análise Espectral , Propriedades de Superfície
20.
J Biomed Mater Res B Appl Biomater ; 108(8): 3370-3382, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32614486

RESUMO

Focal knee resurfacing implants (FKRIs) are intended to treat cartilage defects in middle-aged patients. Most FKRIs are metal-based, which hampers follow-up of the joint using magnetic resonance imaging and potentially leads to damage of the opposing cartilage. The purpose of this study was to develop a nondegradable thermoplastic polyurethane (TPU) FKRI and investigate its osseointegration. Different surface roughness modifications and biphasic calcium phosphate (BCP) coating densities were first tested in vitro on TPU discs. The in vivo osseointegration of BCP-coated TPU implants was subsequently compared to uncoated TPU implants and the titanium bottom layer of metal control implants in a caprine model. Implants were implanted bilaterally in stifle joints and animals were followed for 12 weeks, after which the bone-to-implant contact area (BIC) was assessed. Additionally, 18F-sodium-fluoride (18F-NaF) positron emission tomography PET/CT-scans were obtained at 3 and 12 weeks to visualize the bone metabolism over time. The BIC was significantly higher for the BCP-coated TPU implants compared to the uncoated TPU implants (p = .03), and did not significantly differ from titanium (p = .68). Similar 18F-NaF tracer uptake patterns were observed between 3 and 12 weeks for the BCP-coated TPU and titanium implants, but not for the uncoated implants. TPU FKRIs with surface modifications could provide the answer to the drawbacks of metal FKRIs.


Assuntos
Materiais Revestidos Biocompatíveis/química , Hidroxiapatitas/química , Joelho/cirurgia , Osseointegração , Poliuretanos/química , Próteses e Implantes , Animais , Calcificação Fisiológica , Células Cultivadas , Radioisótopos de Flúor , Cabras , Humanos , Prótese do Joelho , Células-Tronco Mesenquimais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluoreto de Sódio , Propriedades de Superfície , Titânio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa