Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 109(9): 1331-1345, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36048829

RESUMO

The awn of grasses is a long, conspicuous outgrowth of the floral bracts in a grass spikelet. It is known to impact agricultural yield, but we know little about its broader ecological function, nor the selective forces that lead to its evolution. Grass awns are phenotypically diverse across the extant ~12,000 species of Poaceae. Awns have been lost and gained repeatedly over evolutionary time, between and within lineages, suggesting that they could be under selection and might provide adaptive benefit in some environments. Despite the phylogenetic context, we know of no studies that have tested whether the origin of awns correlates with putative selective forces on their form and function. Presence or absence of awns is not plastic; rather, heritability is high. The awns of grasses often are suggested as adaptations for dispersal, and most experimental work has been aimed at testing this hypothesis. Proposed dispersal functions include soil burial, epizoochory, and aerial orientation. Awns may also protect the seed from drought, herbivores, or fire by helping it become buried in soil. We do not fully understand the fitness or nutrient costs of awn production, but in some species awns function in photosynthesis, providing carbon to the seed. Here we show that awns likely provide an adaptive advantage, but argue that studies on awn function have lacked critical phylogenetic information to demonstrate adaptive convergent evolution, are taxonomically biased, and often lack clear alternative hypotheses.


Assuntos
Poaceae , Sementes , Carbono , Filogenia , Poaceae/genética , Solo
2.
Ann Bot ; 121(2): 377-383, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29300810

RESUMO

Background and Aims: The division of resource investment between male and female functions is poorly known for land plants other than angiosperms. The ancient lycophyte genus Selaginella is similar in some ways to angiosperms (in heterospory and in having sex allocation occur in the sporophyte generation, for example) but lacks the post-fertilization maternal investments that angiosperms make via fruit and seed tissues. One would therefore expect Selaginella to have sex allocation values less female-biased than in flowering plants and closer to the theoretical prediction of equal investment in male and female functions. Nothing is currently known of sex allocation in the genus, so even the simplest predictions have not been tested. Methods: Volumetric measurements of microsporangial and megasporangial investment were made in 14 species of Selaginella from four continents. In five of these species the length of the main above-ground axis of each plant was measured to determine whether sex allocation is related to plant size. Key Results: Of the 14 species, 13 showed male-biased allocations, often extreme, in population means and among the great majority of individual plants. There was some indication from the five species with axis length measurements that relative male allocation might be related to the release height of spores, but this evidence is preliminary. Conclusions: Sex allocation in Selaginella provides a phylogenetic touchstone showing how the innovations of fruit and seed investment in the angiosperm life cycle lead to typically female-biased allocations in that lineage. Moreover, the male bias we found in Selaginella requires an evolutionary explanation. The bias was often greater than what would occur from the mere absence of seed and fruit investments, and thus poses a challenge to sex allocation theory. It is possible that differences between microspores and megaspores in their dispersal ecology create selective effects that favour male-biased sexual allocation. This hypothesis remains tentative.


Assuntos
Selaginellaceae/fisiologia , Células Germinativas Vegetais/fisiologia , Reprodução , Selaginellaceae/anatomia & histologia
3.
Evolution ; 72(5): 1080-1091, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29645092

RESUMO

Heterospory was a pivotal evolutionary innovation for land plants, but it has never been clear why it evolved. We used the geographic distributions of 114 species of the heterosporous lycophyte Selaginella to explore the functional ecology of microspore and megaspore size, traits that would be correlated with many aspects of a species' regeneration niche. We characterized habitats at a global scale using leaf area index (LAI), a measure of foliage density and thus shading, and net primary productivity (NPP), a measure of growth potential. Microspore size tends to decrease as habitat LAI and NPP increase, a trend that could be related to desiccation resistance or to filtration of wind-borne particles by leaf surfaces. Megaspore size tends to increase among species that inhabit regions of high LAI, but there is an important interaction with NPP. This geographical pattern suggests that larger megaspores provide an establishment advantage in shaded habitats, although in open habitats, where light is less limiting, higher productivity of the environment seems to give an advantage to species with smaller megaspores. These results support previous theoretical arguments that heterospory was originally an adaptation to the increasing height and density of Devonian vegetative canopies that accompanied the diversification of vascular plants with leaves.


Assuntos
Ecossistema , Selaginellaceae/fisiologia , Esporos , Adaptação Fisiológica , Evolução Biológica , Filogeografia , Folhas de Planta , Fenômenos Fisiológicos Vegetais , Selaginellaceae/classificação , Selaginellaceae/crescimento & desenvolvimento
4.
Biol Rev Camb Philos Soc ; 92(3): 1739-1754, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27730728

RESUMO

The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation-resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation - an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life-history patterns - suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm-producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency-dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re-invention of anisogamy within the context of a sporophyte-dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate-encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re-establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.


Assuntos
Evolução Biológica , Fenômenos Fisiológicos Vegetais , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa