Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Breast Cancer Res ; 26(1): 11, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229104

RESUMO

BACKGROUND: Human breast cancer most frequently originates within a well-defined anatomical structure referred to as the terminal duct lobular unit (TDLU). This structure is endowed with its very own lobular fibroblasts representing one out of two steady-state fibroblast subtypes-the other being interlobular fibroblasts. While cancer-associated fibroblasts (CAFs) are increasingly appreciated as covering a spectrum of perturbed states, we lack a coherent understanding of their relationship-if any-with the steady-state fibroblast subtypes. To address this, we here established two autologous CAF lines representing inflammatory CAFs (iCAFs) and myofibroblast CAFs (myCAFs) and compared them with already established interlobular- and lobular fibroblasts with respect to their origin and impact on tumor formation. METHODS: Primary breast tumor-derived CAFs were transduced to express human telomerase reverse transcriptase (hTERT) and sorted into CD105low and CD105high populations using fluorescence-activated cell sorting (FACS). The two populations were tested for differentiation similarities to iCAF and myCAF states through transcriptome-wide RNA-Sequencing (RNA-Seq) including comparison to an available iCAF-myCAF cell state atlas. Inference of origin in interlobular and lobular fibroblasts relied on RNA-Seq profiles, immunocytochemistry and growth characteristics. Osteogenic differentiation and bone formation assays in culture and in vivo were employed to gauge for origin in bone marrow-derived mesenchymal stem cells (bMSCs). Functional characteristics were assessed with respect to contractility in culture and interaction with tumor cells in mouse xenografts. The cells' gene expression signatures were tested for association with clinical outcome of breast cancer patients using survival data from The Cancer Genome Atlas database. RESULTS: We demonstrate that iCAFs have properties in common with interlobular fibroblasts while myCAFs and lobular fibroblasts are related. None of the CAFs qualify as bMSCs as revealed by lack of critical performance in bone formation assays. Functionally, myCAFs and lobular fibroblasts are almost equally tumor promoting as opposed to iCAFs and interlobular fibroblasts. A myCAF gene signature is found to associate with poor breast cancer-specific survival. CONCLUSIONS: We propose that iCAFs and myCAFs originate in interlobular and lobular fibroblasts, respectively, and more importantly, that the tumor-promoting properties of lobular fibroblasts render the TDLU an epicenter for breast cancer evolution.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/patologia , Osteogênese , Fibroblastos/metabolismo , Fibroblastos Associados a Câncer/patologia , Mama/patologia , Microambiente Tumoral
2.
Breast Cancer Res ; 22(1): 102, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993755

RESUMO

BACKGROUND: Breast cancer arises within specific regions in the human breast referred to as the terminal duct lobular units (TDLUs). These are relatively dynamic structures characterized by sex hormone driven cyclic epithelial turnover. TDLUs consist of unique parenchymal entities embedded within a fibroblast-rich lobular stroma. Here, we established and characterized a new human breast lobular fibroblast cell line against its interlobular counterpart with a view to assessing the role of region-specific stromal cues in the control of TDLU dynamics. METHODS: Primary lobular and interlobular fibroblasts were transduced to express human telomerase reverse transcriptase (hTERT). Differentiation of the established cell lines along lobular and interlobular pathways was determined by immunocytochemical staining and genome-wide RNA sequencing. Their functional properties were further characterized by analysis of mesenchymal stem cell (MSC) differentiation repertoire in culture and in vivo. The cells' physiological relevance for parenchymal differentiation was examined in heterotypic co-culture with fluorescence-activated cell sorting (FACS)-purified normal breast primary luminal or myoepithelial progenitors. The co-cultures were immunostained for quantitative assessment of epithelial branching morphogenesis, polarization, growth, and luminal epithelial maturation. In extension, myoepithelial progenitors were tested for luminal differentiation capacity in culture and in mouse xenografts. To unravel the significance of transforming growth factor-beta (TGF-ß)-mediated crosstalk in TDLU-like morphogenesis and differentiation, fibroblasts were incubated with the TGF-ß signaling inhibitor, SB431542, prior to heterotypic co-culture with luminal cells. RESULTS: hTERT immortalized fibroblast cell lines retained critical phenotypic traits in culture and linked to primary fibroblasts. Cell culture assays and transplantation to mice showed that the origin of fibroblasts determines TDLU-like and ductal-like differentiation of epithelial progenitors. Whereas lobular fibroblasts supported a high level of branching morphogenesis by luminal cells, interlobular fibroblasts supported ductal-like myoepithelial characteristics. TDLU-like morphogenesis, at least in part, relied on intact TGF-ß signaling. CONCLUSIONS: The significance of the most prominent cell type in normal breast stroma, the fibroblast, in directing epithelial differentiation is largely unknown. Through establishment of lobular and interlobular fibroblast cell lines, we here demonstrate that epithelial progenitors are submitted to stromal cues for site-specific differentiation. Our findings lend credence to considering stromal subtleties of crucial importance in the development of normal breast and, in turn, breast cancer.


Assuntos
Neoplasias da Mama/patologia , Mama/citologia , Diferenciação Celular , Células Epiteliais/citologia , Fibroblastos/citologia , Células-Tronco/metabolismo , Células Estromais/citologia , Adulto , Animais , Mama/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular , Técnicas de Cocultura , Células Epiteliais/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco/citologia , Células Estromais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 114(47): E10102-E10111, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109259

RESUMO

The human breast parenchyma consists of collecting ducts and terminal duct lobular units (TDLUs). The TDLU is the site of origin of most breast cancers. The reason for such focal susceptibility to cancer remains poorly understood. Here, we take advantage of a region-specific heterogeneity in luminal progenitors to interrogate the differentiation repertoire of candidate stem cells in TDLUs. We show that stem-like activity in serial passage culture and in vivo breast morphogenesis relies on the preservation of a myoepithelial phenotype. By enrichment for region-specific progenitors, we identify bipotent and multipotent progenitors in ducts and TDLUs, respectively. We propose that focal breast cancer susceptibility, at least in part, originates from region-specific myoepithelial progenitors.


Assuntos
Transformação Celular Neoplásica/genética , Células Epiteliais/citologia , Glândulas Mamárias Humanas/citologia , Células-Tronco Multipotentes/citologia , Células Musculares/citologia , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Queratina-19/genética , Queratina-19/metabolismo , Glândulas Mamárias Humanas/metabolismo , Pessoa de Meia-Idade , Células-Tronco Multipotentes/metabolismo , Células Musculares/metabolismo , Mioepitelioma/diagnóstico , Mioepitelioma/genética , Mioepitelioma/metabolismo , Mioepitelioma/patologia , Especificidade de Órgãos , Cultura Primária de Células , Prognóstico
4.
Breast Cancer Res ; 21(1): 141, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31829259

RESUMO

Organoid cultures are increasingly used to model human cancers experimentally with a view to tailoring personalized medicine and predicting drug responses. Breast cancer is no exception, but in particular, primary breast cancer poses some inherent difficulties due to the frequent presence of residual non-malignant cells in the biopsies. We originally developed an assay for the distinction between malignant and non-malignant structures in primary breast cancer organoid cultures (Petersen et al., Proc Natl Acad Sci (USA) 89(19):9064-8, 1992). Here, we apply this assay to assess the frequency of normal-like organoids in primary breast carcinoma cultures and the cellular composition as a consequence of passaging. We find that in consecutively collected samples of primary human breast cancers, residual non-malignant tissues were observed histologically in five out of ten biopsies. Based on relevant morphogenesis and correct polarization as recorded by expression in luminal epithelial cells of mucin 1 (Muc1), occludin, and keratin 19 (K19) and expression in basal cells of integrin ß4, p63, and K14, non-malignant organoids were present in all primary human breast cancer-derived cultures. Furthermore, passaging in a contemporary culture medium was in favor of the selective expansion of basal-like cells. We conclude that organoid cultures of human breast cancers are most representative of the tissue origin in primary culture.


Assuntos
Neoplasias da Mama/patologia , Organoides/patologia , Biomarcadores , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Imunofluorescência , Variação Genética , Humanos , Imuno-Histoquímica , Técnicas de Cultura de Tecidos , Células Tumorais Cultivadas , Sequenciamento Completo do Genoma
5.
Mol Cancer ; 17(1): 171, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30526604

RESUMO

Tumorigenesis is increasingly considered to rely on subclones of cells poised to undergo an epithelial to mesenchymal transition (EMT) program. We and others have provided evidence, however, that the tumorigenesis of human breast cancer is not always restricted to typical EMT cells but is also somewhat paradoxically conveyed by subclones of apparently differentiated, non-EMT cells. Here we characterize such non-EMT-like and EMT-like subclones. Through a loss-of-function screen we found that a member of the E3 ubiquitin ligase complexes, FBXO11, specifically fuels tumor formation of a non-EMT-like clone by restraining the p53/p21 pathway. Interestingly, in the related EMT-like clone, FBXO11 operates through the BCL2 pathway with little or no impact on tumorigenesis. These data command caution in attempts to assess tumorigenesis prospectively based on EMT profiling, and they emphasize the importance of next generation subtyping of tumors, that is at the level of clonal composition.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Proteínas F-Box/genética , Proteína-Arginina N-Metiltransferases/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
6.
BMC Cancer ; 17(1): 19, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056857

RESUMO

BACKGROUND: One of the hallmarks of cancer is an altered energy metabolism, and here, mitochondria play a central role. Previous studies have indicated that some mitochondrial ribosomal proteins change their expression patterns upon transformation. METHOD: In this study, we have used the selection of recombinant antibody libraries displayed on the surface of filamentous bacteriophage as a proteomics discovery tool for the identification of breast cancer biomarkers. A small subpopulation of breast cells expressing both cytokeratin 19 and cytokeratin 14 was targeted using a novel selection procedure. RESULTS: We identified the mitochondrial ribosomal protein s18a (Mrps18a) as a protein which is upregulated in breast cancer. However, Mrps18a was not homogeneously upregulated in all cancer cells, suggesting the existence of sub-populations within the tumor. The upregulation was not confined to cytokeratin 19 and cytokeratin 14 double positive cells. CONCLUSION: This study illustrates how phage display can be applied towards the discovery of proteins which exhibit changes in their expression patterns. We identified the mitochondrial protein Mrps18a as being upregulated in human breast cancer cells compared to normal breast cells.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Ribossômicas/biossíntese , Western Blotting , Neoplasias da Mama/patologia , Técnicas de Visualização da Superfície Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Proteínas Mitocondriais/análise , Ribossomos Mitocondriais/metabolismo , Proteômica , Proteínas Ribossômicas/análise , Regulação para Cima
7.
Breast Cancer Res ; 18(1): 108, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809866

RESUMO

BACKGROUND: The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. METHODS: The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. RESULTS: Lobular fibroblasts are CD105high/CD26low while interlobular fibroblasts are CD105low/CD26high. Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. CONCLUSIONS: Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.


Assuntos
Fibroblastos/citologia , Fibroblastos/metabolismo , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Biomarcadores , Diferenciação Celular , Linhagem da Célula , Análise por Conglomerados , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fenótipo
8.
Proc Natl Acad Sci U S A ; 109(16): 6124-9, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22454501

RESUMO

The majority of human breast cancers exhibit luminal epithelial differentiation. However, most aggressive behavior, including invasion and purported cancer stem cell activity, are considered characteristics of basal-like cells. We asked the following questions: Must luminal-like breast cancer cells become basal-like to initiate tumors or to invade? Could luminally differentiated cells within a basally initiated hierarchy also be tumorigenic? To answer these questions, we used rare and mutually exclusive lineage markers to isolate subsets of luminal-like and basal-like cells from human breast tumors. We enriched for populations with or without prominent basal-like traits from individual tumors or single cell cloning from cell lines and recovered cells with a luminal-like phenotype. Tumor cells with basal-like traits mimicked phenotypic and functional behavior associated with stem cells assessed by gene expression, mammosphere formation and lineage markers. Luminal-like cells without basal-like traits, surprisingly, were fully capable of initiating invasive tumors in NOD SCID gamma (NSG) mice. In fact, these phenotypically pure luminal-like cells generated larger and more invasive tumors than their basal-like counterparts. The tumorigenicity and invasive potential of the luminal-like cancer cells relied strongly on the expression of the gene GCNT1, which encodes a key glycosyltransferase controlling O-glycan branching. These findings demonstrate that basal-like cells, as defined currently, are not a requirement for breast tumor aggressiveness, and that within a single tumor there are multiple "stem-like" cells with tumorigenic potential casting some doubt on the hypothesis of hierarchical or differentiative loss of tumorigenicity.


Assuntos
Neoplasias da Mama/patologia , Diferenciação Celular , Neoplasias Mamárias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Adapaleno , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Mucina-1/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Naftalenos/metabolismo , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Células Tumorais Cultivadas
9.
Commun Biol ; 5(1): 219, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273332

RESUMO

The myoepithelial (MEP) lineage of human breast comprises bipotent and multipotent progenitors in ducts and terminal duct lobular units (TDLUs). We here assess whether this heterogeneity impacts on oncogenic PIK3CA transformation. Single cell RNA sequencing (scRNA-seq) and multicolor imaging reveal that terminal ducts represent the most enriched source of cells with ductal MEP markers including α-smooth muscle actin (α-SMA), keratin K14, K17 and CD200. Furthermore, we find neighboring CD200high and CD200low progenitors within terminal ducts. When sorted and kept in ground state conditions, their CD200low and CD200high phenotypes are preserved. Upon differentiation, progenitors remain multipotent and bipotent, respectively. Immortalized progenitors are transduced with mutant PIK3CA on an shp53 background. Upon transplantation, CD200low MEP progenitors distinguish from CD200high by the formation of multilayered structures with a hyperplastic inner layer of luminal epithelial cells. We suggest a model with spatially distributed MEP progenitors as founder cells of biphasic breast lesions with implications for early detection and prevention strategies.


Assuntos
Neoplasias da Mama , Células-Tronco Neoplásicas , Oncogenes , Mama , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Epiteliais/patologia , Feminino , Humanos
10.
NPJ Breast Cancer ; 8(1): 81, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821504

RESUMO

Normal breast luminal epithelial progenitors have been implicated as cell of origin in basal-like breast cancer, but their anatomical localization remains understudied. Here, we combine collection under the microscope of organoids from reduction mammoplasties and single-cell mRNA sequencing (scRNA-seq) of FACS-sorted luminal epithelial cells with multicolor imaging to profile ducts and terminal duct lobular units (TDLUs) and compare them with breast cancer subtypes. Unsupervised clustering reveals eleven distinct clusters and a differentiation trajectory starting with keratin 15+ (K15+) progenitors enriched in ducts. Spatial mapping of luminal progenitors is confirmed at the protein level by staining with critical duct markers. Comparison of the gene expression profiles of normal luminal cells with those of breast cancer subtypes suggests a strong correlation between normal breast ductal progenitors and basal-like breast cancer. We propose that K15+ basal-like breast cancers originate in ductal progenitors, which emphasizes the importance of not only lineages but also cellular position within the ductal-lobular tree.

11.
Sci Rep ; 11(1): 17232, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446796

RESUMO

Full term pregnancy at an early age is the only factor known to consistently protect against breast cancer. Because hormone receptor positive progenitors in the human breast relay endocrine signaling, we here sought to determine whether an experimental mimicry of the third trimester surge of hormones would change their susceptibility to growth stimulation. Hormone receptor positive, reduction mammoplasty-derived human breast epithelial progenitors were exposed to a short-term, pregnancy-level of estradiol, and their subsequent response to estradiol stimulation was analyzed. Exposure to pregnancy-level of estradiol results in subsequent lower sensitivity to estrogen-induced proliferation. Expression array and immunoblotting reveal upregulation of S100A7 and down-regulation of p27, both associated with parity and epithelial differentiation. Notably, we find that the epithelial differentiation is accompanied by upregulation of E-cadherin and down-regulation of vimentin as well as by diminished migration and more mature luminal epithelial differentiation in a mouse transplantation model. Our findings are in support of a de-sensitization mechanism for pregnancy-induced prevention against breast cancer.


Assuntos
Mama/efeitos dos fármacos , Estradiol/farmacologia , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Animais , Mama/citologia , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Estrogênios/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Gravidez , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Proteína A7 Ligante de Cálcio S100/genética , Proteína A7 Ligante de Cálcio S100/metabolismo
12.
Curr Biol ; 28(20): 3220-3228.e6, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30293715

RESUMO

Cancers develop in a complex mutational landscape. Genetic models of tumor formation have been used to explore how combinations of mutations cooperate to promote tumor formation in vivo. Here, we identify lactate dehydrogenase (LDH), a key enzyme in Warburg effect metabolism, as a cooperating factor that is both necessary and sufficient for epidermal growth factor receptor (EGFR)-driven epithelial neoplasia and metastasis in a Drosophila model. LDH is upregulated during the transition from hyperplasia to neoplasia, and neoplasia is prevented by LDH depletion. Elevated LDH is sufficient to drive this transition. Notably, genetic alterations that increase glucose flux, or a high-sugar diet, are also sufficient to promote EGFR-driven neoplasia, and this depends on LDH activity. We provide evidence that increased LDHA expression promotes a transformed phenotype in a human primary breast cell culture model. Furthermore, analysis of publically available cancer data showed evidence of synergy between elevated EGFR and LDHA activity linked to poor clinical outcome in a number of human cancers. Altered metabolism has generally been assumed to be an enabling feature that accelerates cancer cell proliferation. Our findings provide evidence that sugar metabolism may have a more profound role in driving neoplasia than previously appreciated.


Assuntos
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Hidroliases/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/fisiopatologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Receptores de Peptídeos de Invertebrados/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Drosophila melanogaster , Humanos
13.
Oncotarget ; 8(6): 10580-10593, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28076334

RESUMO

Understanding human cancer increasingly relies on insight gained from subtype specific comparisons between malignant and non-malignant cells. The most frequent subtype in breast cancer is the luminal. By far the most frequently used model for luminal breast cancer is the iconic estrogen receptor-positive (ERpos) MCF7 cell line. However, luminal specific comparisons have suffered from the lack of a relevant non-malignant counterpart. Our previous work has shown that transforming growth factor-ß receptor (TGFßR) inhibition suffices to propagate prospectively isolated ERpos human breast luminal cells from reduction mammoplasties (HBEC). Here we demonstrate that transduction of these cells with hTERT/shp16 renders them immortal while remaining true to the luminal lineage including expression of functional ER (iHBECERpos). Under identical culture conditions a major difference between MCF7 and normal-derived cells is the dependence of the latter on TGFßR inhibition for ER expression. In a breast fibroblast co-culture model we further show that whereas MCF7 proliferate concurrently with ER expression, iHBECERpos form correctly polarized acini, and segregate into proliferating and ER expressing cells. We propose that iHBECERpos may serve to shed light on hitherto unappreciated differences in ER regulation and function between normal breast and breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Separação Celular/métodos , Glândulas Mamárias Humanas/metabolismo , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Comunicação Celular , Linhagem Celular Transformada , Proliferação de Células , Microambiente Celular , Técnicas de Cocultura , Estradiol/farmacologia , Feminino , Fibroblastos/metabolismo , Genótipo , Humanos , Células MCF-7 , Glândulas Mamárias Humanas/efeitos dos fármacos , Fenótipo , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Telomerase/genética , Telomerase/metabolismo , Transdução Genética
14.
Toxicol Sci ; 93(2): 357-68, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16757570

RESUMO

We examined the effect of 17beta-estradiol (E2) and soy isoflavones' exposure on morphogenesis and global gene expression in the murine mammary gland. Three exposure regimens were applied: isoflavones added to the diet throughout either the lactational period (via the dams) or the postweaning period and E2 administered orally during the lactational period. Whole mounts of mammary glands were evaluated both in juvenile and adult animals with respect to branching morphogenesis and terminal end bud (TEB) formation. At postnatal day (PND) 28, we observed a significant increase in branching morphogenesis in all treated groups with the most pronounced effect after E2 exposure. For the E2-treated animals there was also a significant increase in TEB formation. At PNDs 42-43 the postweaning isoflavone and the E2 groups showed a transient reduction in the number of TEBs. A similar response after isoflavone and E2 exposure was further substantiated by changes in gene expression, since the same groups of genes were up- and downregulated, particularly in the E2 and postweaning isoflavone regimen. All changes in gene expression correlated with changes in the cellular composition of the gland, i.e., more and larger TEBs and ducts. The results suggest an estrogenic response of physiological doses of isoflavones on mammary gland development at both the morphological and molecular level, which resembled that induced by puberty.


Assuntos
Estradiol/farmacologia , Glycine max , Isoflavonas/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Animais , Estradiol/sangue , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Hibridização In Situ , Isoflavonas/sangue , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos
15.
In Vitro Cell Dev Biol Anim ; 42(10): 332-40, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17316068

RESUMO

Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits with the tissue of origin. Microvasculature was localized in situ by immunohistochemistry in breast samples. From this tissue, collagen-rich stroma and adipose tissue were dissected mechanically and further disaggregated to release microvessel organoids. BRENCs were cultured from these organoids in endothelial specific medium and characterized by staining for endothelial markers. Microvessels were a prominent feature of intralobular tissue as evidenced by immunostaining against endothelial specific markers such as CD31, VE-cadherin, and von Willebrand factor (VWF). Double staining against VE-cadherin and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) showed that blood and lymphatic vessels could be distinguished. An antibody against CD31 was used to refine protocols for isolation of microvasculature from reduction mammoplasties. BRENCs retained critical traits even at high passage, including uptake of low-density lipoprotein, and had E-selectin induced upon treatment with tumor necrosis factor-alpha. The first signs of senescence in passage 14 were accompanied by gain of trisomy 11. At passage 18 cells showed chromosomal aberrations and growth arrest as revealed by beta-galactosidase staining. We demonstrate here that breast microvasculature may serve as a large-scale source for expansion of BRENCs with molecular and functional traits preserved. These cells will form the basis for studies on the role of endothelial cells in breast morphogenesis.


Assuntos
Mama/irrigação sanguínea , Mama/citologia , Senescência Celular/fisiologia , Células Endoteliais/citologia , Separação Celular , Células Cultivadas , Instabilidade Cromossômica , Células Endoteliais/metabolismo , Feminino , Humanos , Cariotipagem , Fenótipo , Fatores de Tempo
16.
Cancer Genomics Proteomics ; 13(1): 21-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26708596

RESUMO

BACKGROUND/AIM: Primary tumors display a great level of intra-tumor heterogeneity in breast cancer. The current lack of prognostic and predictive biomarkers limits accurate stratification and the ability to predict response to therapy. The aim of the present study was to select recombinant antibody fragments specific against breast cancer subpopulations, aiding the discovery of novel biomarkers. MATERIALS AND METHODS: Recombinant antibody fragments were selected by phage display. A novel shadowstick technology enabled the direct selection using tissue sections of antibody fragments specific against small subpopulations of breast cancer cells. Selections were performed against a subpopulation of breast cancer cells expressing CD271+, as these previously have been indicated to be potential breast cancer stem cells. The selected antibody fragments were screened by phage ELISA on both breast cancer and myoepithelial cells. The antibody fragments were validated and evaluated by immunohistochemistry experiments. RESULTS: Our study revealed an antibody fragment, LH8, specific for breast cancer cells. Immunohistochemistry results indicate that this particular antibody fragment binds an antigen that exhibits differential expression in different breast cancer subpopulations. CONCLUSION: Further studies characterizing this antibody fragment, the subpopulation it binds and the cognate antigen may unearth novel biomarkers of clinical relevance.


Assuntos
Bacteriófagos/imunologia , Neoplasias da Mama/imunologia , Especificidade de Anticorpos , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/patologia , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Biblioteca de Peptídeos
17.
Nat Commun ; 6: 8786, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26564780

RESUMO

Investigating the susceptibility of oestrogen receptor-positive (ER(pos)) normal human breast epithelial cells (HBECs) for clinical purposes or basic research awaits a proficient cell-based assay. Here we set out to identify markers for isolating ER(pos) cells and to expand what appear to be post-mitotic primary cells into exponentially growing cultures. We report a robust technique for isolating ER(pos) HBECs from reduction mammoplasties by FACS using two cell surface markers, CD166 and CD117, and an intracellular cytokeratin marker, Ks20.8, for further tracking single cells in culture. We show that ER(pos) HBECs are released from growth restraint by small molecule inhibitors of TGFß signalling, and that growth is augmented further in response to oestrogen. Importantly, ER signalling is functionally active in ER(pos) cells in extended culture. These findings open a new avenue of experimentation with normal ER(pos) HBECs and provide a basis for understanding the evolution of human breast cancer.


Assuntos
Mama/citologia , Células Epiteliais/citologia , Estrogênios/metabolismo , Citometria de Fluxo/métodos , Receptores de Estrogênio/metabolismo , Mama/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos
18.
Immunol Res ; 62(3): 263-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25963139

RESUMO

Breast cancer tumors are composed of heterogeneous cell populations. These populations display a high variance in morphology, growth and metastatic propensity. They respond differently to therapeutic interventions, and some may be more prone to cause recurrence. Studying individual subpopulations of breast cancer may provide crucial knowledge for the development of individualized therapy. However, this process is challenged by the availability of biomarkers able to identify subpopulations specifically. Here, we demonstrate an approach for phage display selection of recombinant antibody fragments on cryostat sections of human breast cancer tissue. This method allows for selection of recombinant antibodies binding to antigens specifically expressed in a small part of the tissue section. In this case, a CD271(+) subpopulation of breast cancer cells was targeted, and these may be potential breast cancer stem cells. We isolated an antibody fragment LH 7, which in immunohistochemistry experiments demonstrates specific binding to breast cancer subpopulations. The selection of antibody fragments directly on small defined areas within a larger section of malignant tissue is a novel approach by which it is possible to better target cellular heterogeneity in proteomic studies. The identification of novel biomarkers is relevant for our understanding and intervention in human diseases. The selection of the breast cancer-specific antibody fragment LH 7 may reveal novel subpopulation-specific biomarkers, which has the potential to provide new insight and treatment strategies for breast cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Proteínas do Tecido Nervoso/imunologia , Receptores de Fator de Crescimento Neural/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos Antineoplásicos/imunologia , Especificidade de Anticorpos/imunologia , Biomarcadores Tumorais/análise , Neoplasias da Mama/genética , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Coloração e Rotulagem/métodos
19.
Cell Prolif ; 36 Suppl 1: 33-44, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14521514

RESUMO

The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value of knowing the cellular origin of individual tumours is clear and should aid in designing effective therapies. To do this, however, we need strategies aimed at defining the nature of stem and progenitor cell populations in the normal breast. In this review, we will discuss our technical approach for delineating the origin of the epithelial cell types. A major step forward was the purification of each cell type by the application of immunomagnetic cell sorting based on expression of lineage-specific surface antigens. We then developed chemically defined media that could support either the luminal epithelial or the myoepithelial cell phenotype in primary cultures. Having succeeded in continuous propagation presumably without loss of markers, we could show that a subset of the luminal epithelial cells could convert to myoepithelial cells, signifying the possible existence of a progenitor cell population. By combining the information on marker expression and in situ localization with immunomagnetic sorting and subsequent immortalization, we have identified and isolated a cytokeratin 19-positive suprabasal putative precursor cell in the luminal epithelial compartment and established representative cell lines. This suprabasal-derived epithelial cell line is able to generate both itself and differentiated luminal epithelial and myoepithelial cells, and in addition, is able to form elaborate terminal duct lobular unit (TDLU)-like structures within a reconstituted basement membrane. As more than 90% of breast cancers arise in TDLUs and more than 90% are also cytokeratin 19-positive, we suggest that this cell population contains a breast-cancer progenitor.


Assuntos
Neoplasias da Mama/patologia , Mama/citologia , Células Epiteliais/citologia , Células-Tronco/citologia , Mama/crescimento & desenvolvimento , Linhagem Celular , Humanos
20.
In Vitro Cell Dev Biol Anim ; 39(7): 297-303, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12908855

RESUMO

Mesenchymal-like cells in the stroma of breast cancer may arise as a consequence of plasticity within the epithelial compartment, also referred to as epithelial-mesenchymal transition, or by recruitment of genuine mesenchymal cells from the peritumoral stroma. Cells of both the epithelial compartment and the stromal compartment express alpha smooth muscle actin (alpha-sm actin) as part of a myoepithelial or a myofibroblastic differentiation program, respectively. Moreover, because both epithelial- and mesenchymal-derived cells are nontumorigenic, other means of discrimination are warranted. Here, we describe the contraction of hydrated collagen gels as a rapid functional assay for the distinction between epithelial- and mesenchymal-derived stromal-like cells irrespective of the status of alpha-sm actin expression. Three epithelial-derived cell lines and three genuine mesenchymal-derived breast cell lines were plated on top of hydrated collagen lattices. Reduction in gel height was measured every hour for 6 h and after 22 h using an x-y-z automated position table. Significantly, the epithelial-derived cells, irrespective of a high alpha-sm actin expression, had a fivefold lower contractility (10.0% reduction in gel height) than their true mesenchymal counterparts (53.1% reduction in gel height). To test whether at all force generation could be induced in the nonmesenchymal cells by alpha-sm actin, transductions were performed to obtain a tetracycline-dependent expression. Expression under these conditions did not augment contractility. It is concluded that epithelial-derived mesenchymal-like cells are functionally defective within a connective tissue environment irrespective of an apparent contractile phenotype.


Assuntos
Actinas/metabolismo , Técnicas de Cultura de Células/métodos , Colágeno/metabolismo , Células Epiteliais/citologia , Mesoderma/citologia , Actinas/genética , Animais , Antibacterianos/metabolismo , Neoplasias da Mama , Linhagem Celular Tumoral , Células Cultivadas , Doxiciclina/metabolismo , Células Epiteliais/metabolismo , Feminino , Géis , Humanos , Mesoderma/metabolismo , Estresse Mecânico , Células Estromais/citologia , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa