Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
J Phys Chem A ; 128(14): 2727-2736, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38538553

RESUMO

In this work, properties related to antioxidant-potential mechanisms (such as the bond dissociation enthalpy, BDE, for the homolytic cleavage of the O-H bond and ionization energies, IEs) were determined for phenol, pyrocatechol, and gallic acid (GA). Both the protonated and deprotonated forms of GA were investigated. The Feller-Peterson-Dixon (FPD) composite method was employed with a variety of computational approaches, i.e., density functional theory, Möller-Plesset perturbation theory, and coupled-cluster-based methods, in combination with large correlation consistent basis sets with extrapolation to the complete basis set limit and consideration of core electron correlation effects. FPD results were compared to experimental and computational data available in the literature, presenting good agreement. For example, the FPD BDE (298 K) obtained for phenol, which was based on valence-correlated MP2/CBS calculations with contributions from correlating all electrons, was determined to be 87.56 kcal/mol, a value that is 0.42 kcal/mol lower than the result obtained in the most recent experiments, 87.98 ± 0.62. Calibration against coupled-cluster calculations was also carried out for phenol. We expect that the outcomes gathered here may help in establishing a general protocol for computational chemists that are interested in determining antioxidant-related properties for phenolic compounds with considerable accuracy as well as to motivate future IE measurements (particularly for GA) to be accomplished in the near future.

2.
J Phys Chem A ; 128(28): 5586-5604, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38954748

RESUMO

High-level electronic structure calculations were conducted to examine the bonding and spectroscopic properties of the UO0/± and UF0/± diatomic molecules. The low-lying Ω states were described by using multireference SO-CASPT2 calculations. The adiabatic electronic affinity (AEA), adiabatic ionization energy (IE), and bond dissociation energy (BDE) were calculated at the Feller-Peterson-Dixon (FPD) level. The ground state of UO is predicted to be 5I4, and that of UF is 4I9/2. The calculated AEAs of UO and UF are 1.123 and 0.453 eV, respectively, and the corresponding IEs are 5.976 and 6.278 eV. The BDE of UO (749.5 kJ/mol) is predicted to be considerably higher than that of UF (627.2 kJ/mol), and both are higher than those predicted for UB, UC, and UN. NBO calculations show strong ionic character for the ground states of UO and UF and bond orders that range from 2 to 3 and from 1 to 2, respectively. Comparisons of the calculated properties to those of the series comprising UB, UC, and UN diatomic molecules are given.

3.
Nature ; 558(7709): 301-306, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875409

RESUMO

Oxidized phospholipids (OxPL) are ubiquitous, are formed in many inflammatory tissues, including atherosclerotic lesions, and frequently mediate proinflammatory changes 1 . Because OxPL are mostly the products of non-enzymatic lipid peroxidation, mechanisms to specifically neutralize them are unavailable and their roles in vivo are largely unknown. We previously cloned the IgM natural antibody E06, which binds to the phosphocholine headgroup of OxPL, and blocks the uptake of oxidized low-density lipoprotein (OxLDL) by macrophages and inhibits the proinflammatory properties of OxPL2-4. Here, to determine the role of OxPL in vivo in the context of atherogenesis, we generated transgenic mice in the Ldlr-/- background that expressed a single-chain variable fragment of E06 (E06-scFv) using the Apoe promoter. E06-scFv was secreted into the plasma from the liver and macrophages, and achieved sufficient plasma levels to inhibit in vivo macrophage uptake of OxLDL and to prevent OxPL-induced inflammatory signalling. Compared to Ldlr-/- mice, Ldlr -/- E06-scFv mice had 57-28% less atherosclerosis after 4, 7 and even 12 months of 1% high-cholesterol diet. Echocardiographic and histologic evaluation of the aortic valves demonstrated that E06-scFv ameliorated the development of aortic valve gradients and decreased aortic valve calcification. Both cholesterol accumulation and in vivo uptake of OxLDL were decreased in peritoneal macrophages, and both peritoneal and aortic macrophages had a decreased inflammatory phenotype. Serum amyloid A was decreased by 32%, indicating decreased systemic inflammation, and hepatic steatosis and inflammation were also decreased. Finally, the E06-scFv prolonged life as measured over 15 months. Because the E06-scFv lacks the functional effects of an intact antibody other than the ability to bind OxPL and inhibit OxLDL uptake in macrophages, these data support a major proatherogenic role of OxLDL and demonstrate that OxPL are proinflammatory and proatherogenic, which E06 counteracts in vivo. These studies suggest that therapies inactivating OxPL may be beneficial for reducing generalized inflammation, including the progression of atherosclerosis, aortic stenosis and hepatic steatosis.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Inflamação/metabolismo , Fosfolipídeos/antagonistas & inibidores , Fosfolipídeos/metabolismo , Animais , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apoptose , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Colesterol/administração & dosagem , Colesterol/farmacologia , Progressão da Doença , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Hipercolesterolemia/patologia , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Imunoglobulina M/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Fosfolipídeos/química , Fosfolipídeos/imunologia , Fosforilcolina/imunologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico
4.
Nature ; 561(7724): E43, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013121

RESUMO

In this Letter, affiliation number 1 was originally missing from the HTML; the affiliations were missing for author Ming-Yow Hung in the HTML; and the Fig. 4 legend erroneously referred to panels a-h, instead of a-g. These errors have been corrected online.

5.
J Chem Phys ; 161(6)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39115167

RESUMO

Fully relativistic calculations, primarily at the 4-component coupled-cluster singles and doubles with perturbative triples [CCSD(T)] level of theory with the Dirac-Coulomb (DC) Hamiltonian, have been carried out for the superheavy (E125)F molecule using large Gaussian basis sets. The electronic ground state is determined to have an [Og]8s25g16f3 configuration on E125 with an Ω = 6 ground state and an 8p electron largely donated to F. A Mulliken population analysis indicates that the ground state is mainly ionic with a partial charge of +0.79 on E125 and a single sigma bond involving the F 2p and E125 8p spinors. The occupied g spinor is not involved in the bonding. With the largest basis set used in this work, the (0 K) dissociation energy was calculated at the DC-CCSD(T) level of theory to be 7.02 eV. Analogous calculations were also carried out for the E125 atom, both the neutral and its cation. The lowest energy electron configuration of E125+, [Og]8s1/225g7/216f5/23 with a J = 6 ground state, was found to be similar to that in (E125)F, while the neutral E125 atom has an [Og]8s1/225g7/216f5/227d3/218p1/21 ground state electron configuration with a J = 17/2 ground state. The ionization energy (IE) of E125 is reported for the first time and is calculated to be 4.70 eV at the DC-CCSD(T) level of theory. Non-relativistic calculations were also carried out on the E125 atom and the (E125)F molecule. The non-relativistic ground state of the E125 atom was calculated to have a 5g5 ground state with an IE of just 3.4 eV. The net effect of relativity on (E125)F is to stabilize its bonding.

6.
J Chem Phys ; 161(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39087536

RESUMO

A new computational framework for spinor-based relativistic exact two-component (X2C) calculations is developed using contracted basis sets with a spin-orbit contraction scheme. Generally contracted, j-adapted basis sets of p-block elements using primitive functions in the correlation-consistent basis sets are constructed for the X2C Hamiltonian with atomic mean-field spin-orbit integrals (the X2CAMF scheme). The contraction coefficients are taken from atomic X2CAMF Hartree-Fock spinors, thereby following the simple concept of a linear combination of atomic orbitals. Benchmark calculations of spin-orbit splittings, equilibrium bond lengths, and harmonic vibrational frequencies demonstrate the accuracy and efficacy of the j-adapted spin-orbit contraction scheme.

7.
Circulation ; 145(8): 586-602, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34915728

RESUMO

BACKGROUND: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily has an effect on left ventricles (LVs) and is often associated with LV dilation and dysfunction. However, in part because of the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying the susceptibility of LVs to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 (PR domain-containing 16) cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. METHODS: Prdm16 cardiomyocyte-specific knockout (Prdm16cKO) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and chromatin immunoprecipitation deep sequencing were performed to identify direct transcriptional targets of PRDM16 in cardiomyocytes. Single-cell RNA sequencing in combination with spatial transcriptomics was used to determine cardiomyocyte identity at the single-cell level. RESULTS: Cardiomyocyte-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. PRDM16 functioned mechanistically as a compact myocardium-enriched transcription factor that activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16cKO LV compact myocardial cardiomyocytes shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial cardiomyocytes or neurons. Chamber-specific transcriptional regulation by PRDM16 was attributable in part to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. CONCLUSIONS: These results demonstrate that disruption of proper specification of compact cardiomyocytes may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of the LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
8.
J Comput Chem ; 44(5): 687-696, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36399072

RESUMO

The impact of complete basis set extrapolation schemes (CBS), diffuse functions, and tight weighted-core functions on enthalpies of formation predicted via the DLPNO-CCSD(T1) reduced Feller-Peterson-Dixon approach has been examined for neutral H,C,O-compounds. All tested three-point (TZ/QZ/5Z) extrapolation schemes result in mean unsigned deviation (MUD) below 2 kJ mol-1 relative to the experiment. The two-point QZ/5Z and TZ/QZ CBS 1 / l max 3 extrapolation schemes are inferior to their inverse power counterpart ( 1 / l max + 1 / 2 4 ) by 1.3 and 4.3 kJ mol-1 . The CBS extrapolated frozen core atomization energies are insensitive (within 1 kJ mol-1 ) to augmentation of the basis set with tight weighted core functions. The core-valence correlation effects converge already at triple-ζ, although double-ζ/triple-ζ CBS extrapolation performs better and is recommended. The effect of diffuse function augmentation converges slowly, and cannot be reproduced with double- ζ or triple- ζ calculations as these are plagued with basis set superposition and incompleteness errors.


Assuntos
Fenômenos Físicos
9.
J Phys Chem A ; 127(36): 7579-7585, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37657073

RESUMO

The atomization enthalpies of the U(VI) species UF6 and the uranium oxyhalides UO2X2 (X = F, Cl, Br, I, and At) were calculated using a composite relativistic Feller-Peterson-Dixon (FPD) approach based on scalar relativistic DKH3-CCSD(T) with extrapolations to the CBS limit. The inherent multideterminant nature of the U atom was mitigated by utilizing the singly charged atomic cation in all calculations with correction back to the neutral asymptote via the accurate ionization energy of the U atom. The effects of SO coupling were recovered using full 4-component CCSD(T) with contributions due to the Gaunt Hamiltonian calculated using Dirac-Hartree-Fock. The final atomization enthalpy for UF6 (752.2 kcal/mol) was within 2.5 kcal/mol of the experimental value, but unfortunately the latter carries a ±2.4 kcal/mol uncertainty that is predominantly due to the experimental uncertainty in the formation enthalpy of the U atom. The analogous value for UO2F2 (607.6 kcal/mol) was in nearly exact agreement with the experiment, but the latter has a stated experimental uncertainty of ±4.3 kcal/mol. The FPD atomization enthalpy for UO2Cl2 (540.4 kcal/mol) was within the experimental error limit of ±5.5 kcal/mol. FPD atomization energies for the non-U-containing molecules (used for reaction enthalpies) H2O and HX (X = F, Cl, Br, I, and At) were within at most 0.3 kcal/mol of their experimental values where available. The FPD atomization enthalpies, together with FPD reaction enthalpies for two different reactions, were used to determine heats of formation for all species of this work, with estimated uncertainties of ±4 kcal/mol. The calculated heat of formation for UF6 (-511.0 kcal/mol) is within 2.5 kcal/mol of the accurately known (±0.45 kcal/mol) experimental value.

10.
J Phys Chem A ; 127(3): 704-723, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36635235

RESUMO

The thermochemistry of halocarbon species containing iodine and bromine is examined through an extensive interplay between new Feller-Peterson-Dixon (FPD) style composite methods and a detailed analysis of all available experimental and theoretical determinations using the thermochemical network that underlies the Active Thermochemical Tables (ATcT). From the computational viewpoint, a slower convergence of the components of composite thermochemistry methods is observed relative to species that solely contain first row elements, leading to a higher computational expense for achieving comparable levels of accuracy. Potential systematic sources of computational uncertainty are investigated, and, not surprisingly, spin-orbit coupling is found to be a critical component, particularly for iodine containing molecular species. The ATcT analysis of available experimental and theoretical determinations indicates that prior theoretical determinations have significantly larger uncertainties than originally reported, particularly in cases where molecular spin-orbit effects were ignored. Accurate and reliable heats of formation are reported for 38 halogen containing systems, based on combining the current computations with previous experimental and theoretical work via the ATcT approach.

11.
J Phys Chem A ; 127(34): 7186-7197, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37590893

RESUMO

A collaborative effort between experiment and theory toward elucidating the electronic and molecular structures of uranium-gold clusters is presented. Anion photoelectron spectra of UAun-(n = 3-7) were taken at the third (355 nm) and fourth (266 nm) harmonics of a Nd:YAG laser, as well as excimer (ArF 193 nm) photon energies, where the experimental adiabatic electron affinities and vertical detachment energies values were measured. Complementary first-principles calculations were subsequently carried out to corroborate experimentally determined electron detachment energies and to determine the geometry and electronic structure for each cluster. Except for the ring-like neutral isomer of UAu6 where one unpaired electron is spread over the Au atoms, all other neutral and anionic UAun clusters (n = 3-7) were calculated to possess open-shell electrons with the unpaired electrons localized on the central U atom. The smaller clusters closely resemble the analogous UFn species, but significant deviations are seen starting with UAu5 where a competition between U-Au and Au-Au bonding begins to become apparent. The UAu6 system appears to mark a transition where Au-Au interactions begin to dominate, where both a ring-like and two heavily distorted octahedral structures around the central U atom are calculated to be nearly isoenergetic. With UAu7, only ring-like structures are calculated. Overall, the calculated electron detachment energies are in good agreement with the experimental values.

12.
J Am Chem Soc ; 144(43): 19685-19688, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279217

RESUMO

Here, anion photoelectron spectroscopy and first-principles quantum chemistry are used to demonstrate to what degree Au can act as a surrogate for F in UF6 and its anion. Unlike UF6, UAu6 exhibits strong ligand-ligand, i.e., Au-Au, interactions, resulting in three low-lying isomers, two of which are three-dimensional while the third isomer has a ring-like quasi two-dimensional structure. Additionally, all the UAu6 isomers have open-shell electrons, which in nearly all cases are localized on the central U atom. The adiabatic electron affinity and vertical detachment energy are measured to be 3.05 ± 0.05 and 3.28 ± 0.05 eV, respectively, and are in very good agreement with calculations.


Assuntos
Elétrons , Ligantes , Espectroscopia Fotoeletrônica , Ânions/química , Isomerismo
13.
Circ Res ; 127(2): 284-297, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32345129

RESUMO

RATIONALE: ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE: To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS: We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS: ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.


Assuntos
Bloqueio Atrioventricular/metabolismo , Nó Atrioventricular/metabolismo , Função Ventricular , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Bloqueio Atrioventricular/fisiopatologia , Nó Atrioventricular/fisiologia , Caderinas/genética , Caderinas/metabolismo , Conexinas/genética , Conexinas/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Vinculina/genética , Vinculina/metabolismo , Proteína da Zônula de Oclusão-1/genética , alfa Catenina/genética , alfa Catenina/metabolismo
14.
Phys Chem Chem Phys ; 24(29): 17751-17758, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35843227

RESUMO

In this work, an investigation on the ionization potentials (IPs) of the glycine molecule (NH2CH2COOH) is presented. IPs ranging up to ∼20 eV were probed for each of the six conformations considered, with the referred threshold being chosen based on both: (i) the observations by recent photoelectron-photoion coincidence (PEPICO) experiments and (ii) the energy range of relevance to the modeling of other photo-induced processes (e.g., photoionization). For computing the IPs, the equation-of-motion ionization potential coupled-cluster with single and double excitations method (EOMIP-CCSD) was employed with large correlation consistent aug-cc-pVXZ and aug-cc-pCVXZ (X = D, T, and Q) basis sets. Extrapolation to the complete basis set limit and consideration of core electron correlation effects were also taken into account. Subsequently, the Feller-Peterson-Dixon (FPD) approach was used for considering all the contributions and to obtain accurate IPs. In addition, coupled-cluster with single and double excitations as well as perturbative triples, CCSD(T), was also used with the aug-cc-pVTZ basis set. When compared to each other, results obtained through the use of these approaches yielded excellent agreement. In general, the outcomes from the present work provide additional information to the insights gathered from the recent PEPICO experiments as well as accurate IPs for all 6 conformations of glycine using an approach based on high levels of theory. Hence, it is expected that other investigations focusing on photo-induced processes originating from NH2CH2COOH (for instance, the computational modeling of its photoionization) will be motivated for study in the future.


Assuntos
Elétrons , Glicina , Simulação por Computador , Conformação Molecular
15.
J Phys Chem A ; 126(2): 198-210, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989579

RESUMO

High-level electronic structure calculations of the low-lying energy electronic states for ThH, ThH-, and ThH+ are reported and compared to experimental measurements. The inclusion of spin-orbit coupling is critical to predict the ground-state ordering as inclusion of spin-orbit switches the coupled-cluster CCSD(T) ordering of the two lowest energy states for ThH and ThH+. At the multireference spin-orbit SO-CASPT2 level, the ground states of ThH, ThH-, and ThH+ are predicted to be the 2Δ3/2, 3Φ2, and 3Δ1 states, respectively. The adiabatic electron affinity is calculated to be 0.820 eV, and the vertical detachment energy is calculated to be 0.832 eV in comparison to an experimental value of 0.87 ± 0.02 eV. The observed ThH- photoelectron spectrum has many transitions, which approximately correlate with excitations of Th+ and/or Th. The adiabatic ionization energy of ThH including spin-orbit corrections is calculated to be 6.181 eV. The natural bond orbital results are consistent with a significant contribution of the Th+H- ionic configuration to the bonding in ThH. The bond dissociation energies for ThH, ThH-, and ThH+ using the Feller-Peterson-Dixon approach were calculated to be similar for all three molecules and lie between 259 and 280 kJ/mol.

16.
J Phys Chem A ; 126(50): 9392-9407, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36508745

RESUMO

A combination of high-level ab initio calculations and anion photoelectron detachment (PD) measurements is reported for the UC, UC-, and UC+ molecules. To better compare the theoretical values with the experimental photoelectron spectrum (PES), a value of 1.493 eV for the adiabatic electron affinity (AEA) of UC was calculated at the Feller-Peterson-Dixon (FPD) level. The lowest vertical detachment energy (VDE) is predicted to be 1.500 eV compared to the experimental value of 1.487 ± 0.035 eV. A shoulder to lower energy in the experimental PD spectrum with the 355 nm laser can be assigned to a combination of low-lying excited states of UC- and excited vibrational states. The VDEs calculated for the low-lying excited electronic states of UC at the SO-CASPT2 level are consistent with the observed additional electron binding energies at 1.990, 2.112, 2.316, and 3.760 eV. Potential energy curves for the Ω states and the associated spectroscopic properties are also reported. Compared to UN and UN+, the bond dissociation energy (BDE) of UC (411.3 kJ/mol) is predicted to be considerably lower. The natural bond orbitals (NBO) calculations show that the UC0/+/- molecules have a bond order of 2.5 with their ground-state configuration arising from changes in the oxidation state of the U atom in terms of the 7s orbital occupation: UC (5f27s1), UC- (5f27s2), and UC+ (5f27s0). The behavior of the UN and UC sequence of molecules and anions differs from the corresponding sequences for UO and UF.

17.
J Phys Chem A ; 126(43): 7944-7953, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269194

RESUMO

The results of calculations of the properties of the anion UN- including electron detachment are described, which further expand our knowledge of this diatomic molecule. High-level electronic structure calculations were conducted for the UN and UN- diatomic molecules and compared to photoelectron spectroscopy measurements. The low-lying Ω states were obtained using multireference CASPT2 including spin-orbit effects up to ∼20,000 cm-1. At the Feller-Peterson-Dixon (FPD) level, the adiabatic electron affinity (AEA) of UN is estimated to be 1.402 eV and the vertical detachment energy (VDE) is 1.423 eV. The assignment of the UN excited states shows good agreement with the experimental results with a VDE of 1.424 eV. An Ω = 4 ground state was obtained for UN- which is mainly associated with the 3H ΛS state. Thermochemical calculations estimate a bond dissociation energy (BDE) for UN- (U- + N) of 665.9 kJ/mol, ∼15% larger than that of UN and UN+. The NBO analysis reveals U-N triple bonds for the UN, UN-, and UN+ species.

18.
J Chem Phys ; 156(5): 054305, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135280

RESUMO

The thorium-gold negative ions ThAu2 -, ThAu2O-, and ThAuOH- have been observed and experimentally characterized by anion photoelectron spectroscopy. These experiments are accompanied by extensive ab initio electronic structure calculations using a relativistic composite methodology based primarily on coupled cluster singles and doubles with perturbative triples calculations. The theoretical electron affinities (EAs) at 0 K agree with the experimental adiabatic EAs to within 0.02 eV for all species. Two separate isomers were located in the calculations for ThAuOH-, and detachment from both of these appears to be present in the photoelectron spectrum. Excited electronic states of the neutral molecules are reported at the equation of motion-coupled cluster singles and doubles level of theory. Atomization energies and heats of formation are also calculated for each neutral species and have expected uncertainties of 3 and 4 kcal/mol, respectively. The σ bonds between Th and Au are determined by natural bond orbital analysis to consist of predominately sd hybrids on Th bonding with the Au 6s orbital. In order to investigate the correspondence between the bonding in Th-Au and Th-F molecules, a limited number of calculations were also carried out on most of the F-analogs of this study. These results demonstrate that Au does behave like F in these cases, although the Th-F σ bonds are much more ionic compared to Th-Au. This results in an EA for ThF2 that is 10 kcal/mol smaller than that of ThAu2. The EA values for the Th(IV) species, i.e., ThX2O and ThXOH, only differed, however, by 3-4 kcal/mol.

19.
Circulation ; 142(4): 365-379, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32393053

RESUMO

BACKGROUND: Metabolic disorders such as obesity and diabetes mellitus can cause dysfunction of endothelial cells (ECs) and vascular rarefaction in adipose tissues. However, the modulatory role of ECs in adipose tissue function is not fully understood. Other than vascular endothelial growth factor-vascular endothelial growth factor receptor-mediated angiogenic signaling, little is known about the EC-derived signals in adipose tissue regulation. We previously identified Argonaute 1 (AGO1; a key component of microRNA-induced silencing complex) as a crucial regulator in hypoxia-induced angiogenesis. In this study, we intend to determine the AGO1-mediated EC transcriptome, the functional importance of AGO1-regulated endothelial function in vivo, and the relevance to adipose tissue function and obesity. METHODS: We generated and subjected mice with EC-AGO1 deletion (EC-AGO1-knockout [KO]) and their wild-type littermates to a fast food-mimicking, high-fat high-sucrose diet and profiled the metabolic phenotypes. We used crosslinking immunoprecipitation- and RNA-sequencing to identify the AGO1-mediated mechanisms underlying the observed metabolic phenotype of EC-AGO1-KO. We further leveraged cell cultures and mouse models to validate the functional importance of the identified molecular pathway, for which the translational relevance was explored using human endothelium isolated from healthy donors and donors with obesity/type 2 diabetes mellitus. RESULTS: We identified an antiobesity phenotype of EC-AGO1-KO, evident by lower body weight and body fat, improved insulin sensitivity, and enhanced energy expenditure. At the organ level, we observed the most significant phenotype in the subcutaneous and brown adipose tissues of KO mice, with greater vascularity and enhanced browning and thermogenesis. Mechanistically, EC-AGO1 suppression results in inhibition of thrombospondin-1 (THBS1/TSP1), an antiangiogenic and proinflammatory cytokine that promotes insulin resistance. In EC-AGO1-KO mice, overexpression of TSP1 substantially attenuated the beneficial phenotype. In human endothelium isolated from donors with obesity or type 2 diabetes mellitus, AGO1 and THBS1 are expressed at higher levels than the healthy controls, supporting a pathological role of this pathway. CONCLUSIONS: Our study suggests a novel mechanism by which ECs, through the AGO1-TSP1 pathway, control vascularization and function of adipose tissues, insulin sensitivity, and whole-body metabolic state.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Argonautas/metabolismo , Suscetibilidade a Doenças , Endotélio/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Adulto , Animais , Proteínas Argonautas/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Fatores de Iniciação em Eucariotos/genética , Feminino , Perfilação da Expressão Gênica , Marcação de Genes , Loci Gênicos , Humanos , Resistência à Insulina , Masculino , Doenças Metabólicas/diagnóstico , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Obesidade , Fenótipo
20.
Inorg Chem ; 60(14): 10426-10438, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34213318

RESUMO

Threshold collision-induced dissociation (TCID) of the thorium monocarbonyl cation, ThCO+, with xenon is performed using a guided ion beam tandem mass spectrometer. The only product observed is Th+ resulting from loss of the CO ligand. Analysis of the kinetic energy-dependent cross sections for this CID reaction yields the first experimental determination of the bond dissociation energy (BDE) of Th+-CO at 0 K as 0.94 ± 0.06 eV. Calculated BDEs at the CCSD(T) level of theory with cc-pVXZ (X = T and Q) basis sets and a complete basis set (CBS) extrapolation are in good agreement with the experimental result. The Feller-Peterson-Dixon composite coupled-cluster methodology was also applied on both ThCO+ and ThCO, with contributions up to CCSDT(Q) and a four-component treatment of spin-orbit coupling effects. The final 0 K Th+-CO BDE of 0.94 ± 0.04 eV is in excellent agreement with the current experimental result. The ionization energy of ThCO, as well as the atomization energies and heats of formation for both ThCO and ThCO+, is reported at this same level of theory. Complete potential energy profiles of both quartet and doublet spin are also constructed to elucidate the mechanism for the formation and interconversion of different isomers of [Th,O,C]+. Chemical bonding patterns in low-lying states of ThCO+ and potential energy curves for ThCO+ dissociation are also investigated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa