Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(2): E166-E177, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019083

RESUMO

Functional hypothalamic amenorrhea (FHA) is characterized by estrogen deficiency that significantly impacts metabolic, bone, cardiovascular, mental, and reproductive health. Given the importance of environmental factors such as stress and body composition, and particularly considering the importance of estrogens in regulating the gut microbiota, some changes in the intestinal microenvironment are expected when all of these factors occur simultaneously. We aimed to assess whether the gut microbiota composition is altered in FHA and to determine the potential impact of hormonal replacement therapy (HRT) on the gut microbiota. This prospective observational study included 33 patients aged 18-34 yr with FHA and 10 age-matched healthy control women. Clinical, hormonal, and metabolic evaluations were performed at baseline for the FHA group only, whereas gut microbiota profile was assessed by 16S rRNA gene amplicon sequencing for both groups. All measurements were repeated in patients with FHA after receiving HRT for 6 mo. Gut microbiota alpha diversity at baseline was significantly different between patients with FHA and healthy controls (P < 0.01). At the phylum level, the relative abundance of Fusobacteria was higher in patients with FHA after HRT (P < 0.01), as was that of Ruminococcus and Eubacterium at the genus level (P < 0.05), which correlated with a decrease in circulating proinflammatory cytokines. FHA is a multidimensional disorder that is interconnected with dysbiosis through various mechanisms, particularly involving the gut-brain axis. HRT appears to induce a favorable shift in the gut microbiota in patients with FHA, which is also associated with a reduction in the systemic inflammatory status.NEW & NOTEWORTHY Our study marks the first comprehensive analysis of gut microbiota composition in FHA and the impact of HRT on it, along with biochemical, anthropometric, and psychometric aspects. Our results indicate distinct gut microbiota composition in patients with FHA compared with healthy individuals. Importantly, HRT prompts a transition toward a more beneficial gut microbiota profile and reduced inflammation. This study validates the concept of FHA as a multifaceted disorder interlinked with dysbiosis, particularly involving the gut-brain axis.


Assuntos
Microbioma Gastrointestinal , Humanos , Feminino , Amenorreia , Disbiose/metabolismo , RNA Ribossômico 16S/genética , Estrogênios/farmacologia
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474034

RESUMO

The advent of biologic drugs has revolutionized the treatment of Inflammatory Bowel Disease, increasing rates of response and mucosal healing in comparison to conventional therapies by allowing the treatment of corticosteroid-refractory cases and reducing corticosteroid-related side effects. However, biologic therapies (anti-TNFα inhibitors, anti-α4ß7 integrin and anti-IL12/23) are still burdened by rates of response that hover around 40% (in biologic-naïve patients) or lower (for biologic-experienced patients). Moreover, knowledge of the mechanisms underlying drug resistance or loss of response is still scarce. Several cellular and molecular determinants are implied in therapeutic failure; genetic predispositions, in the form of single nucleotide polymorphisms in the sequence of cytokines or Human Leukocyte Antigen, or an altered expression of cytokines and other molecules involved in the inflammation cascade, play the most important role. Accessory mechanisms include gut microbiota dysregulation. In this narrative review of the current and most recent literature, we shed light on the mentioned determinants of therapeutic failure in order to pave the way for a more personalized approach that could help avoid unnecessary treatments and toxicities.


Assuntos
Produtos Biológicos , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/uso terapêutico , Corticosteroides/uso terapêutico , Produtos Biológicos/uso terapêutico
3.
Gut ; 72(9): 1642-1650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37339849

RESUMO

BACKGROUND: Several randomised clinical trials (RCTs) performing faecal microbiota transplantation (FMT) for the management of inflammatory bowel disease (IBD), particularly for ulcerative colitis, have recently been published, but with major variations in study design. These include differences in administered dose, route and frequency of delivery, type of placebo and evaluated endpoints. Although the overall outcomes appear to be promising, they are highly dependent on both donor and recipient factors. OBJECTIVE: To develop concensus-based statements and recommendations for the evaluation, management and potential treatment of IBD using FMT in order to move towards standardised practices. DESIGN: An international panel of experts convened several times to generate evidence-based guidelines by performing a deep evaluation of currently available and/or published data. Twenty-five experts in IBD, immunology and microbiology collaborated in different working groups to provide statements on the following key issues related to FMT in IBD: (A) pathogenesis and rationale, (B) donor selection and biobanking, (C) FMT practices and (D) consideration of future studies and perspectives. Statements were evaluated and voted on by all members using an electronic Delphi process, culminating in a plenary consensus conference and generation of proposed guidelines. RESULTS AND CONCLUSIONS: Our group has provided specific statements and recommendations, based on best available evidence, with the end goal of providing guidance and general criteria required to promote FMT as a recognised strategy for the treatment of IBD.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Transplante de Microbiota Fecal/métodos , Cidade de Roma , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/microbiologia , Colite Ulcerativa/terapia , Resultado do Tratamento
4.
Dig Dis ; 41(3): 489-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36007493

RESUMO

BACKGROUND: A probiotic mixture prevented epithelial barrier impairment in various experimental models. The objective was to evaluate its effects in patients suffering from IBS with diarrhea (IBS-D) with confirmed leaky gut. METHODS: IBS-D patients with increased intestinal permeability measured by radionuclide tracers were enrolled in this pilot, open-label, prospective, interventional, single-center, Phase IV study. Patients received two capsules of a multistrain probiotic a day for 30 days and were evaluated by repeated intestinal permeability tests, the Bristol Stool Scale, and patient-perceived quality of life and satisfaction. RESULTS: Of the 30 enrolled patients (mean age: 42.1 [SD: 13.1] years; female: 60%), 27 completed the study (full analysis set [FAS]), and 18 had no major protocol violation (per protocol set [PPS]). On D30, an improvement of intestinal permeability was observed in 81.5% of patients in FAS, normalization being observed in 37% of the participants (44% in PPS). The mean intestinal permeability was significantly decreased: baseline minus D30, 3.4 (95% CI: 1.7, 5.2); the IBS-QOL total score was significantly increased: D30 minus baseline, 8.0 (95% CI: 3.0, 12.9); and stool consistency was significantly improved. On D15 and D30, 96.3% of patients claimed that their IBS symptoms had been satisfactory alleviated, and a significant improvement was reported for the following VAS-IBS items: abdominal pain, diarrhea, and impact of gastrointestinal problems in daily life. Compliance and tolerance were satisfactory. CONCLUSION: The multistrain probiotic tested may reduce intestinal permeability in a considerable proportion of patients and may improve abdominal pain, stool consistency, and quality of life. These results pave the way for larger, placebo-controlled clinical studies.


Assuntos
Síndrome do Intestino Irritável , Probióticos , Humanos , Feminino , Adulto , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/diagnóstico , Qualidade de Vida , Projetos Piloto , Estudos Prospectivos , Diarreia/terapia , Probióticos/uso terapêutico , Dor Abdominal , Resultado do Tratamento
5.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047594

RESUMO

Gut microbiota (GM) modulation can be investigated as possible solution to enhance recovery after COVID-19. An open-label, single-center, single-arm, pilot, interventional study was performed by enrolling twenty patients recently recovered from COVID-19 to investigate the role of a mixed probiotic, containing Lactobacilli, Bifidobacteria and Streptococcus thermophilus, on gastrointestinal symptoms, local and systemic inflammation, intestinal barrier integrity and GM profile. Gastrointestinal Symptom Rating Scale, cytokines, inflammatory, gut permeability, and integrity markers were evaluated before (T0) and after 8 weeks (T1) of probiotic supplementation. GM profiling was based on 16S-rRNA targeted-metagenomics and QIIME 2.0, LEfSe and PICRUSt computational algorithms. Multiple machine learning (ML) models were trained to classify GM at T0 and T1. A statistically significant reduction of IL-6 (p < 0.001), TNF-α (p < 0.001) and IL-12RA (p < 0.02), citrulline (p value < 0.001) was reported at T1. GM global distribution and microbial biomarkers strictly reflected probiotic composition, with a general increase in Bifidobacteria at T1. Twelve unique KEGG orthologs were associated only to T0, including tetracycline resistance cassettes. ML classified the GM at T1 with 100% score at phylum level. Bifidobacteriaceae and Bifidobacterium spp. inversely correlated to reduction of citrulline and inflammatory cytokines. Probiotic supplementation during post-COVID-19 may trigger anti-inflammatory effects though Bifidobacteria and related-metabolism enhancement.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Probióticos , Humanos , Microbioma Gastrointestinal/genética , Citrulina , Probióticos/uso terapêutico , Probióticos/farmacologia , Citocinas , Bifidobacterium , Aprendizado de Máquina
6.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887337

RESUMO

Inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and Crohn's disease (CD). These are autoimmune diseases of the gastrointestinal tract with a chronic relapsing and remitting course. Due to complex interactions between multiple factors in the etiology of IBD, the discovery of new predictors of disease course and response to therapy, and the development of effective therapies is a significant challenge. The dysregulation of microRNAs (miRNAs), a class of conserved endogenous, small non-coding RNA molecules with a length of 18-25 nucleotides, that regulate gene expression by an RNA interference process, is implicated in the complex pathogenetic context of IBD. Both tissue-derived, circulating, and fecal microRNAs have been explored as promising biomarkers in the diagnosis and the prognosis of disease severity of IBD. In this review, we summarize the expressed miRNA profile in blood, mucosal tissue, and stool and highlight the role of miRNAs as biomarkers with potential diagnostic and therapeutic applications in ulcerative colitis and Crohn's disease. Moreover, we discuss the new perspectives in developing a new screening model for the detection of colorectal cancer (CRC) based on fecal miRNAs.


Assuntos
Colite Ulcerativa , Neoplasias Colorretais , Doença de Crohn , Doenças Inflamatórias Intestinais , MicroRNAs , Biomarcadores/metabolismo , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , MicroRNAs/metabolismo
7.
Liver Int ; 41(6): 1320-1334, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713524

RESUMO

BACKGROUND & AIM: Sarcopenia is frequent in cirrhosis and is associated with unfavourable outcomes. The role of the gut-liver-muscle axis in this setting has been poorly investigated. The aim of this study was to identify gut microbiota, metabolic and inflammatory signatures associated with sarcopenia in cirrhotic patients. METHODS: Fifty cirrhotic patients assessed for the presence of sarcopenia by the quantification of muscle mass and strength were compared with age- and sex-matched controls. A multiomic analysis, including gut microbiota composition and metabolomics, serum myokines and systemic and intestinal inflammatory mediators, was performed. RESULTS: The gut microbiota of sarcopenic cirrhotic patients was poor in bacteria associated with physical function (Methanobrevibacter, Prevotella and Akkermansia), and was enriched in Eggerthella, a gut microbial marker of frailty. The abundance of potentially pathogenic bacteria, such as Klebsiella, was also increased, to the detriment of autochthonous ones. Sarcopenia was associated with elevated serum levels of pro-inflammatory mediators and of fibroblast growth factor 21 (FGF21) in cirrhotic patients. Gut microbiota metabolic pathways involved in amino acid, protein and branched-chain amino acid metabolism were up-regulated, in addition to ethanol, trimethylamine and dimethylamine production. Correlation networks and clusters of variables associated with sarcopenia were identified, including one centred on Klebsiella/ethanol/FGF21/Eggerthella/Prevotella. CONCLUSIONS: Alterations in the gut-liver-muscle axis are associated with sarcopenia in patients with cirrhosis. Detrimental but also compensatory functions are involved in this complex network.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Sarcopenia , Humanos , Cirrose Hepática/complicações
8.
Proc Natl Acad Sci U S A ; 115(40): E9362-E9370, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224451

RESUMO

Defective and/or delayed wound healing has been implicated in the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease (IBD). The resolution of inflammation is particularly important in mucosal organs, such as the gut, where restoration of epithelial barrier function is critical to reestablish homeostasis with the interfacing microenvironment. Although IL-33 and its receptor ST2/ILRL1 are known to be increased and associated with IBD, studies using animal models of colitis to address the mechanism have yielded ambiguous results, suggesting both pathogenic and protective functions. Unlike those previously published studies, we focused on the functional role of IL-33/ST2 during an extended (2-wk) recovery period after initial challenge in dextran sodium sulfate (DSS)-induced colitic mice. Our results show that during acute, resolving colitis the normal function of endogenous IL-33 is protection, and the lack of either IL-33 or ST2 impedes the overall recovery process, while exogenous IL-33 administration during recovery dramatically accelerates epithelial restitution and repair, with concomitant improvement of colonic inflammation. Mechanistically, we show that IL-33 stimulates the expression of a network of microRNAs (miRs) in the Caco2 colonic intestinal epithelial cell (IEC) line, especially miR-320, which is increased by >16-fold in IECs isolated from IL-33-treated vs. vehicle-treated DSS colitic mice. Finally, IL-33-dependent in vitro proliferation and wound closure of Caco-2 IECs is significantly abrogated after specific inhibition of miR-320A. Together, our data indicate that during acute, resolving colitis, IL-33/ST2 plays a crucial role in gut mucosal healing by inducing epithelial-derived miR-320 that promotes epithelial repair/restitution and the resolution of inflammation.


Assuntos
Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-33/metabolismo , Mucosa Intestinal/fisiologia , MicroRNAs/metabolismo , Regeneração , Doença Aguda , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética
9.
Hepatology ; 69(1): 107-120, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29665135

RESUMO

The gut-liver axis plays a pivotal role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), which is the third leading cause of hepatocellular carcinoma (HCC) worldwide. However, the link between gut microbiota and hepatocarcinogenesis remains to be clarified. The aim of this study was to explore what features of the gut microbiota are associated with HCC in patients with cirrhosis and NAFLD. A consecutive series of patients with NAFLD-related cirrhosis and HCC (group 1, 21 patients), NAFLD-related cirrhosis without HCC (group 2, 20 patients), and healthy controls (group 3, 20 patients) was studied for gut microbiota profile, intestinal permeability, inflammatory status, and circulating mononuclear cells. We finally constructed a model depicting the most relevant correlations among these features, possibly involved in hepatocarcinogenesis. Patients with HCC showed increased levels of fecal calprotectin, while intestinal permeability was similar to patients with cirrhosis but without HCC. Plasma levels of interleukin 8 (IL8), IL13, chemokine (C-C motif) ligand (CCL) 3, CCL4, and CCL5 were higher in the HCC group and associated with an activated status of circulating monocytes. The fecal microbiota of the whole group of patients with cirrhosis showed higher abundance of Enterobacteriaceae and Streptococcus and a reduction in Akkermansia. Bacteroides and Ruminococcaceae were increased in the HCC group, while Bifidobacterium was reduced. Akkermansia and Bifidobacterium were inversely correlated with calprotectin concentration, which in turn was associated with humoral and cellular inflammatory markers. A similar behavior was also observed for Bacteroides. Conclusion: Our results suggest that in patients with cirrhosis and NAFLD the gut microbiota profile and systemic inflammation are significantly correlated and can concur in the process of hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/congênito , Carcinoma Hepatocelular/microbiologia , Microbioma Gastrointestinal , Inflamação/complicações , Cirrose Hepática/complicações , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/microbiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Liver Int ; 40(4): 878-888, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951082

RESUMO

BACKGROUND & AIMS: Alcohol use disorder (AUD) represents the most common cause of liver disease. The gut microbiota plays a critical role in the progression of alcohol-related liver damage. Aim of this study was to characterize the gut microbial composition and function in AUD patients with alcohol-associated liver disease (AALD). METHODS: This study included 36 AUD patients (14 with cirrhosis) who were active drinkers and an equal number of matched controls. Stool microbial composition, serum levels of lipopolysaccharide, cytokines/chemokines and gut microbiota functional profile were assessed. RESULTS: AUD patients had a decreased microbial alpha diversity as compared to controls (0.092 vs 0.130, P = .047) and a specific gut microbial signature. The reduction of Akkermansia and the increase in Bacteroides were able to identify AUD patients with an accuracy of 93.4%. Serum levels of lipopolysaccharide (4.91 vs 2.43, P = .009) and pro-inflammatory mediators (tumour necrosis factor alpha 60.85 vs 15.08, P = .001; interleukin [IL] 1beta 4.43 vs 1.72, P = .0001; monocyte chemoattractant protein 1 225.22 vs 16.43, P = .006; IL6 1.87 vs 1.23, P = .008) were significantly increased in AUD patients compared to controls and in cirrhotic patients compared to non-cirrhotic ones (IL6 3.74 vs 1.39, P = .019; IL8 57.60 vs 6.53, P = .004). The AUD-associated gut microbiota showed an increased expression of gamma-aminobutyric acid (GABA) metabolic pathways and energy metabolism. CONCLUSIONS: AUD patients present a specific gut microbial fingerprint, associated with increased endotoxaemia, systemic inflammatory status and functional alterations that may be involved in the progression of the AALD and in the pathogenesis of AUD.


Assuntos
Alcoolismo , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Alcoolismo/complicações , Fezes , Humanos , Cirrose Hepática
11.
Alcohol Clin Exp Res ; 42(12): 2313-2325, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30320890

RESUMO

BACKGROUND: There is strong evidence that alcoholism leads to dysbiosis in both humans and animals. However, it is unclear how changes in the intestinal microbiota (IM) relate to ethanol (EtOH)-induced disruption of gut-liver homeostasis. We investigated this issue using selectively bred Sardinian alcohol-preferring (sP) rats, a validated animal model of excessive EtOH consumption. METHODS: Independent groups of male adult sP rats were exposed to the standard, home-cage 2-bottle "EtOH (10% v/v) versus water" choice regimen with unlimited access for 24 h/d (Group Et) for 3 (T1), 6 (T2), and 12 (T3) consecutive months. Control groups (Group Ct) were composed of matched-age EtOH-naïve sP rats. We obtained samples from each rat at the end of each experimental time, and we used blood and colon tissues for intestinal barrier integrity and/or liver pathology assessments and used stool samples for IM analysis with 16S ribosomal RNA gene sequencing. RESULTS: Rats in Group Et developed hepatic steatosis and elevated serum transaminases and endotoxin/lipopolysaccharide (LPS) levels but no other liver pathological changes (i.e., necrosis/inflammation) or systemic inflammation. While we did not find any apparent alteration of the intestinal colonic mucosa, we found that rats in Group Et exhibited significant changes in IM composition compared to the rats in Group Ct. These changes were sustained throughout T1, T2, and T3. In particular, Ruminococcus, Coprococcus, and Streptococcus were the differentially abundant microbial genera at T3. The KEGG Ortholog profile revealed that IM functional modules, such as biosynthesis, transport, and export of LPS, were also enriched in Group Et rats at T3. CONCLUSIONS: We showed that chronic, voluntary EtOH consumption induced liver injury and endotoxemia together with dysbiotic changes in sP rats. This work sets the stage for improving our knowledge of the prevention and treatment of EtOH-related diseases.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Endotoxemia/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatias Alcoólicas/microbiologia , Consumo de Bebidas Alcoólicas/genética , Animais , Colo/microbiologia , Fígado Gorduroso Alcoólico/microbiologia , Fígado Gorduroso Alcoólico/patologia , Intestinos/patologia , Lipopolissacarídeos/sangue , Fígado/patologia , Testes de Função Hepática , Masculino , RNA Ribossômico 16S , Ratos , Transaminases/sangue
12.
Dig Dis ; 36(1): 56-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28683448

RESUMO

Few data exist on differences in gut microbiota composition among principal gastrointestinal (GI) diseases. We evaluated the differences in gut microbiota composition among uncomplicated diverticular disease (DD), irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBD) patients. DD, IBS, and IBD patients along with healthy controls (CT) were enrolled in our Italian GI outpatient clinic. Stool samples were collected. Microbiota composition was evaluated through a metagenomic gene-targeted approach. GI pathology represented a continuous spectrum of diseases where IBD displayed one extreme, while CT displayed the other. Among Phyla, Biplot PC2/PC3 and dendogram plot showed major differences in samples from IBS and IBD. DD resembled species CT composition, but not for Bacteroides fragilis. In IBS, Dialister spp. and then Faecalibacterium prausnitzii were the most representative species. Ulcerative colitis showed a reduced concentration of Clostridium difficile and an increase of Bacteroides fragilis. In Crohn's disease, Parabacteroides distasonis was the most represented, while Faecalibacterium prausnitzii and Bacteroides fragilis were significantly reduced. Each disorder has its definite overall microbial signature, which produces a clear differentiation from the others. On the other hand, shared alterations constitute the "core dysbiosis" of GI diseases. The assessment of these microbial markers represents a parameter that may complete the diagnostic assessment.


Assuntos
Biomarcadores/metabolismo , Doenças Diverticulares/microbiologia , Microbioma Gastrointestinal , Saúde , Doenças Inflamatórias Intestinais/microbiologia , Síndrome do Intestino Irritável/microbiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Análise de Componente Principal , Especificidade da Espécie
13.
Anal Bioanal Chem ; 409(26): 6097-6111, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28776072

RESUMO

Here, time of flight secondary ion mass spectrometry (ToF-SIMS) and multivariate analysis were combined to study the role of ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), in the colon cancer progression. ToF-SIMS was used to obtain mass spectra and chemical maps from the mucosal surface of human normal (NC), inflamed (IC), and dysplastic (DC) colon tissues. Chemical mapping with a lateral resolution of ≈ 1 µm allowed to evaluate zonation of fatty acids and amino acids as well as the morphological condition of the intestinal glands. High mass resolution ToF-SIMS spectra showed chemical differences in lipid and amino acid composition as a function of pathological state. In positive ion mode, mono- (MAG), di- (DAG), and triacylglycerol (TAG) signals were detected in NC tissues, while in IC and DC tissues, the only cholesterol was present as lipid class representative. Signals from fatty acids, collected in negative ion mode, were subjected to principal component analysis (PCA). PCA showed a strict correlation between IC and DC samples, due to an increase of stearic, arachidonic, and linoleic acid. In the same way, differences in the amino acid composition were highlighted through multivariate analysis. PCA revealed that glutamic acid, leucine/isoleucine, and valine fragments are related to IC tissues. On the other hand, tyrosine, methionine, and tryptophan peaks contributed highly to the separation of DC tissues. Finally, a classification of NC, IC, and DC patients was also achieved through hierarchical cluster analysis of amino acid fragments. In this case, human colonic inflammation showed a stronger relationship with normal than dysplastic condition. Graphical Abstract ᅟ.


Assuntos
Aminoácidos/análise , Colite Ulcerativa/patologia , Colo/patologia , Neoplasias do Colo/patologia , Mucosa Intestinal/patologia , Lipídeos/análise , Espectrometria de Massa de Íon Secundário/métodos , Colite Ulcerativa/complicações , Colo/química , Neoplasias do Colo/complicações , Progressão da Doença , Humanos , Mucosa Intestinal/química , Análise Multivariada , Análise de Componente Principal
14.
Int J Mol Sci ; 18(10)2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934123

RESUMO

Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/imunologia , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Integrinas/antagonistas & inibidores , Integrinas/genética , Integrinas/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Terapia de Alvo Molecular/métodos , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
15.
Dig Dis ; 34(3): 269-78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27027301

RESUMO

Antibiotics are mainly used in clinical practice for their activity against pathogens, but they also alter the composition of commensal gut microbial community. Rifaximin is a non-absorbable antibiotic with additional effects on the gut microbiota about which very little is known. It is still not clear to what extent rifaximin can be able to modulate gut microbiota composition and diversity in different clinical settings. Studies based on culture-dependent techniques revealed that rifaximin treatment promotes the growth of beneficial bacteria, such as Bifidobacteria and Lactobacilli. Accordingly, our metagenomic analysis carried out on patients with different gastrointestinal and liver diseases highlighted a significant increase in Lactobacilli after rifaximin treatment, persisting in the short time period. This result was independent of the disease background and was not accompanied by a significant alteration of the overall gut microbial ecology. This suggests that rifaximin can exert important eubiotic effects independently of the original disease, producing a favorable gut microbiota perturbation without changing its overall composition and diversity.


Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Rifamicinas/farmacologia , Antibacterianos/uso terapêutico , DNA Bacteriano/isolamento & purificação , Humanos , Lactobacillus/efeitos dos fármacos , Rifamicinas/administração & dosagem , Rifaximina
16.
Intern Emerg Med ; 19(2): 275-293, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37505311

RESUMO

The intestine is the largest interface between the internal body and the external environment. The intestinal barrier is a dynamic system influenced by the composition of the intestinal microbiome and the activity of intercellular connections, regulated by hormones, dietary components, inflammatory mediators, and the enteric nervous system (ENS). Over the years, it has become increasingly evident that maintaining a stable intestinal barrier is crucial to prevent various potentially harmful substances and pathogens from entering the internal environment. Disruption of the barrier is referred to as 'leaky gut' or leaky gut wall syndrome and seems to be characterized by the release of bacterial metabolites and endotoxins, such as lipopolysaccharide (LPS), into the circulation. This condition, mainly caused by bacterial infections, oxidative stress, high-fat diet, exposure to alcohol or chronic allergens, and dysbiosis, appear to be highly connected with the development and/or progression of several metabolic and autoimmune systemic diseases, including obesity, non-alcoholic fatty liver disease (NAFLD), neurodegeneration, cardiovascular disease, inflammatory bowel disease, and type 1 diabetes mellitus (T1D). In this review, starting from a description of the mechanisms that enable barrier homeostasis and analyzing the relationship between this complex ecosystem and various pathological conditions, we explore the role of the gut barrier in driving systemic inflammation, also shedding light on current and future therapeutic interventions.


Assuntos
Doenças Autoimunes , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Microbioma Gastrointestinal/fisiologia , Inflamação , Função da Barreira Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia
17.
Genes (Basel) ; 15(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674347

RESUMO

Inflammatory bowel disease (IBD) comprising ulcerative colitis and Crohn's disease is a chronic immune-mediated disease which affects the gastrointestinal tract with a relapsing and remitting course, causing lifelong morbidity. IBD pathogenesis is determined by multiple factors including genetics, immune and microbial factors, and environmental factors. Although therapy options are expanding, remission rates are unsatisfiable, and together with the disease course, response to therapy remains unpredictable. Therefore, the identification of biomarkers that are predictive for the disease course and response to therapy is a significant challenge. Extrachromosomal circular DNA (eccDNA) fragments exist in all tissue tested so far. These fragments, ranging in length from a few hundreds of base pairs to mega base pairs, have recently gained more interest due to technological advances. Until now, eccDNA has mainly been studied in relation to cancer due to its ability to act as an amplification site for oncogenes and drug resistance genes. However, eccDNA could also play an important role in inflammation, expressed both locally in the- involved tissue and at distant sites. Here, we review the current evidence on the molecular mechanisms of eccDNA and its role in inflammation and IBD. Additionally, the potential of eccDNA as a tissue or plasma marker for disease severity and/or response to therapy is evaluated.


Assuntos
Biomarcadores , DNA Circular , Doenças Inflamatórias Intestinais , Humanos , DNA Circular/genética , Doenças Inflamatórias Intestinais/genética , Animais
18.
Nutrients ; 16(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337636

RESUMO

Limited knowledge is available about the relationship between food allergies or intolerances and inflammatory bowel disease (IBD). Clinicians frequently encounter patients who report food allergies or intolerances, and gastroenterologists struggle distinguishing between patients with organic disorders and those with functional disorders, which the patients themselves may associate with specific dietary components. This task becomes even more arduous when managing patients with significant underlying organic conditions, like IBD. The aim of this review is to summarize and emphasize any actual associations between food allergies and intolerances and inflammatory diseases, such as ulcerative colitis and Crohn's disease. Through a narrative disceptation of the current literature, we highlight the increased prevalence of various food intolerances, including lactose, fructose, histamine, nickel, and non-celiac gluten sensitivity, in individuals with IBD. Additionally, we explore the association between increased epithelial barrier permeability in IBD and the development of food sensitization. By doing so, we aim to enhance clinicians' awareness of the nutritional management of patients with IBD when facing complaints or evidence of food allergies or intolerances.


Assuntos
Colite Ulcerativa , Doença de Crohn , Hipersensibilidade Alimentar , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/epidemiologia , Colite Ulcerativa/epidemiologia , Hipersensibilidade Alimentar/epidemiologia , Alérgenos
19.
Front Cell Infect Microbiol ; 14: 1366192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779566

RESUMO

Background: Ulcerative colitis (UC) is a multifactorial chronic inflammatory bowel disease (IBD) that affects the large intestine with superficial mucosal inflammation. A dysbiotic gut microbial profile has been associated with UC. Our study aimed to characterize the UC gut bacterial, fungal, and metabolic fingerprints by omic approaches. Methods: The 16S rRNA- and ITS2-based metataxonomics and gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) metabolomic analysis were performed on stool samples of 53 UC patients and 37 healthy subjects (CTRL). Univariate and multivariate approaches were applied to separated and integrated omic data, to define microbiota, mycobiota, and metabolic signatures in UC. The interaction between gut bacteria and fungi was investigated by network analysis. Results: In the UC cohort, we reported the increase of Streptococcus, Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella, Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus, Gemellaceae, and phenylethyl alcohol; and we also reported the decrease of Akkermansia; Ruminococcaceae; Ruminococcus; Gemmiger; Methanobrevibacter; Oscillospira; Coprococus; Christensenellaceae; Clavispora; Vishniacozyma; Quambalaria; hexadecane; cyclopentadecane; 5-hepten-2-ol, 6 methyl; 3-carene; caryophyllene; p-Cresol; 2-butenal; indole, 3-methyl-; 6-methyl-3,5-heptadiene-2-one; 5-octadecene; and 5-hepten-2-one, 6 methyl. The integration of the multi-omic data confirmed the presence of a distinctive bacterial, fungal, and metabolic fingerprint in UC gut microbiota. Moreover, the network analysis highlighted bacterial and fungal synergistic and/or divergent interkingdom interactions. Conclusion: In this study, we identified intestinal bacterial, fungal, and metabolic UC-associated biomarkers. Furthermore, evidence on the relationships between bacterial and fungal ecosystems provides a comprehensive perspective on intestinal dysbiosis and ecological interactions between microorganisms in the framework of UC.


Assuntos
Bactérias , Colite Ulcerativa , Fezes , Fungos , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal , Metabolômica , RNA Ribossômico 16S , Humanos , Colite Ulcerativa/microbiologia , Colite Ulcerativa/metabolismo , Masculino , Adulto , Feminino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/genética , Pessoa de Meia-Idade , Metabolômica/métodos , RNA Ribossômico 16S/genética , Fezes/microbiologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Disbiose/microbiologia , Metaboloma , Idoso , Adulto Jovem , Microextração em Fase Sólida , Micobioma , Multiômica
20.
Inflamm Bowel Dis ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38944815

RESUMO

BACKGROUND: Inflammatory bowel diseases are chronic disabling conditions with a complex and multifactorial etiology, still incompletely understood. OCTN1, an organic cation transporter, could have a role in modulating the inflammatory response, and some genetic polymorphisms of this molecule have been associated with increased risk of inflammatory bowel diseases. Until now, limited information exists on its potential in predicting/modulating patient's response to therapies. The aim of this study was to evaluate the role of OCTN1 in modifying gut microbiota and mucosal immunity in response to infliximab therapy in murine colitis. METHODS: A dextran sodium sulphate model of colitis was used to assess the clinical efficacy of infliximab administered intravenously in ocnt1 gene knockout mice and their C57BL/6 controls. Stool, colon, and mesenteric lymph node samples were collected to evaluate differences in gut microbiota composition, histology, and T cell populations, respectively. RESULTS: Octn1 -/- influences the microbiota profile and is associated with a worse dysbiosis in mice with colitis. Infliximab treatment attenuates colitis-associated dysbiosis, with an increase of bacterial richness and evenness in both strains. In comparison with wild type, octn1-/- mice have milder disease and a higher baseline percentage of Treg, Tmemory, Th2 and Th17 cells. CONCLUSIONS: Our data support the murine model to study OCTN1 genetic contribution to inflammatory bowel diseases. This could be the first step towards the recognition of this membrane transporter as a biomarker in inflammatory conditions and a predictor of response to therapies.


In this article, we evaluated the role of OCTN1, an organic cation transporter, in modifying gut microbiota and immune T cell populations, as well as its effects on experimental colitis and the response to infliximab treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa