Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(45): 10265-10275, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32356389

RESUMO

Crystalline thin films of π-conjugated molecules are relevant as the active layers in organic electronic devices. Therefore, materials with enhanced control over the supramolecular arrangement, crystallinity, and thin-film morphology are desirable. Herein, it is reported that hydrogen-bonded substituents serve as additional structure-directing elements that positively affect crystallization, thin-film morphology, and device performance of p-type organic semiconductors. It is observed that a quaterthiophene diacetamide exhibits a denser packing than that of other quaterthiophenes in the single-crystal structure and, as a result, displays enhanced intermolecular electronic interactions. This feature was preserved in crystalline thin films that exhibited a layer-by-layer morphology, with large domain sizes and high internal order. As a result, organic field-effect transistors of these polycrystalline thin films showed mobilities in the range of the best mobility values reported for single-crystalline quaterthiophenes. The use of hydrogen-bonded groups may, thus, provide an avenue for organic semiconducting materials with improved morphology and performance.

2.
J Comput Chem ; 37(1): 83-92, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26228927

RESUMO

Computational studies of organic systems are frequently limited to static pictures that closely align with textbook style presentations of reaction mechanisms and isomerization processes. Of course, in reality chemical systems are dynamic entities where a multitude of molecular conformations exists on incredibly complex potential energy surfaces (PES). Here, we borrow a computational technique originally conceived to be used in the context of biological simulations, together with empirical force fields, and apply it to organic chemical problems. Replica-exchange molecular dynamics (REMD) permits thorough exploration of the PES. We combined REMD with density functional tight binding (DFTB), thereby establishing the level of accuracy necessary to analyze small molecular systems. Through the study of four prototypical problems: isomer identification, reaction mechanisms, temperature-dependent rotational processes, and catalysis, we reveal new insights and chemistry that likely would be missed using static electronic structure computations. The REMD-DFTB methodology at the heart of this study is powered by i-PI, which efficiently handles the interface between the DFTB and REMD codes.

3.
J Chem Theory Comput ; 16(6): 3530-3542, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32320235

RESUMO

The pursuit of an increasingly accurate description of intermolecular interactions within the framework of Kohn-Sham density functional theory (KS-DFT) has motivated the construction of numerous benchmark databases over the past two decades. By far, the largest efforts have been spent on closed-shell, neutral dimers for which today the interaction energies and geometries can be accurately reproduced by various combinations of dispersion-corrected density functional approximations (DFAs). In sharp contrast, charged, open-shell dimers remain a challenge as illustrated by the analysis of the OREL26rad benchmark set, composed of π-dimer radical cations. Aside from the methodological aspect, achieving a proper description of radical cationic complexes is appealing due to their role as models for charge carriers in organic semiconductors. In the interest of providing an assessment of more realistic dimer systems, we construct a data set of large radical cationic dimers (CryOrel9) and jointly train the 19 parameters of a dispersion corrected, range-separated hybrid density functional (ωB97X-dDsC). The main objective of ωB97X-dDsC is to provide the maximum balance between the treatment of long-range London dispersion and reduction of the delocalization error, which are essential conditions to obtain accurate energy profiles and binding energies of charged, open-shell dimers. The performance of ωB97X-dDsC, its parent ωB97X functional series, and a selection of wave function-based methods is reported for the CryOrel9 data set. The robustness of the reoptimized variant (ωB97X-dDsC) is also tested on other GMTKN30 data sets.

4.
Chem Sci ; 11(12): 3316-3325, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34122839

RESUMO

We present an extension of our Molecular Transformer model combined with a hyper-graph exploration strategy for automatic retrosynthesis route planning without human intervention. The single-step retrosynthetic model sets a new state of the art for predicting reactants as well as reagents, solvents and catalysts for each retrosynthetic step. We introduce four metrics (coverage, class diversity, round-trip accuracy and Jensen-Shannon divergence) to evaluate the single-step retrosynthetic models, using the forward prediction and a reaction classification model always based on the transformer architecture. The hypergraph is constructed on the fly, and the nodes are filtered and further expanded based on a Bayesian-like probability. We critically assessed the end-to-end framework with several retrosynthesis examples from literature and academic exams. Overall, the frameworks have an excellent performance with few weaknesses related to the training data. The use of the introduced metrics opens up the possibility to optimize entire retrosynthetic frameworks by focusing on the performance of the single-step model only.

5.
J Chem Theory Comput ; 14(5): 2370-2379, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29570294

RESUMO

The Density Overlap Region Indicator (DORI) is a density-based scalar field that reveals covalent bonding patterns and noncovalent interactions in the same value range. This work goes beyond the traditional static quantum chemistry use of scalar fields and illustrates the suitability of DORI for analyzing geometrical and electronic signatures in highly fluxional molecular systems. Examples include a dithiocyclophane, which possesses multiple local minima with differing extents of π-stacking interactions and a temperature dependent rotation of a molecular rotor, where the descriptor is employed to capture fingerprints of CH-π and π-π interactions. Finally, DORI serves to examine the fluctuating π-conjugation pathway of a photochromic torsional switch (PTS). Attention is also placed on postprocessing the large amount of generated data and juxtaposing DORI with a data-driven low-dimensional representation of the structural landscape.

6.
Chem Sci ; 8(1): 361-365, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451180

RESUMO

Here we present a molecular architecture that can reversibly change the geometric conformation of its π-system backbone via irradiation with two different wavelengths. The proposed 'molecular actuator' consists of a photoswitchable azobenzene orthogonally connected to a π-conjugated bithiophene by both direct and aliphatic linker-assisted bonding. Upon exposure to 350 nm light, the trans azobenzene moiety isomerizes to its cis form, causing the bithiophene to assume a semiplanar anti conformation (extended π-conjugation). Exposure to 254 nm light promotes the isomerization of the azobenzene unit back to its initial extended trans conformation, thus forcing the bithiophene fragment to twist out of coplanarity (restricted π-conjugation). The molecular conformation of the bithiophene was characterized using steady-state UV-vis and nuclear magnetic resonance spectroscopy, as well as ab initio computations. The proposed molecular design could be envisaged as a π-conjugation modulator, which has potential to be incorporated into extended linear π-systems, i.e. via the terminal α-thiophene positions, and used to tune their optical and electronic properties.

7.
J Phys Chem Lett ; 6(21): 4422-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26495880

RESUMO

The efficiency of charge carrier mobility in organic semiconductors is heavily dependent upon the long-range organization (i.e., morphology) and the local relative arrangement of the transporting molecules. Here, we exploit London dispersion forces as a design principle to construct compact one-dimensional (1-D) assemblies of quaterthiophene cores. We demonstrate that the substitution of quaterthiophene with dispersion-driven aggregators (e.g., [7]ladderanes, hydrogenated pyrenes, etc.) leads to the formation of highly stable and tightly packed 1-D supramolecular assemblies with electronic compactness superior to that of quaterthiophene crystals. Tunability and even tighter stacking arrangements can be achieved by inserting molecular linkers between the quaterthiophene fragments and the dispersion-driven components. The proposed 1-D nanowires represent an original route toward the rational design of efficient organic semiconductors.

8.
Nat Chem ; 6(6): 468-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24848231

RESUMO

Carbon nanostructures that feature two-dimensional extended nanosheets are important components for technological applications such as high-performance composites, lithium-ion storage, photovoltaics and nanoelectronics. Chemical functionalization would render such structures better processable and more suited for tailored applications, but typically this is precluded by the high temperatures needed to prepare the nanosheets. Here, we report direct access to functional carbon nanosheets of uniform thickness at room temperature. We used amphiphiles that contain hexayne segments as metastable carbon precursors and self-assembled these into ordered monolayers at the air/water interface. Subsequent carbonization by ultraviolet irradiation in ambient conditions resulted in the quantitative carbonization of the hexayne sublayer. Carbon nanosheets prepared in this way retained their surface functionalization and featured an sp(2)-rich amorphous carbon structure comparable to that usually obtained on annealing above 800 °C. Moreover, they exhibited a molecularly defined thickness of 1.9 nm, were mechanically self-supporting over several micrometres and had macroscopic lateral dimensions on the order of centimetres.


Assuntos
Carbono/química , Nanoestruturas/química , Nanotecnologia , Temperatura , Água/química , Ar , Simulação por Computador , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
9.
J Chem Theory Comput ; 9(7): 3020-5, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583983

RESUMO

Accurate modeling of noncovalent interactions involving sulfur today is ubiquitous, particularly with regard to the role played by sulfur-containing heterocycles in the field of organic electronics. The density functional tight binding (DFTB) method offers a good compromise between computational efficiency and accuracy, enabling the treatment of thousands of atoms at a fraction of the cost of density functional theory (DFT) evaluations. DFTB is an approximate quantum chemical approach that is based on the DFT total energy expression. Here, we address a critical issue inherent to the DFTB parametrization, which prevents the use of the DFTB framework for simulating noncovalent interactions involving sulfur atoms and precludes its combination with a dispersion correction. (1-5) Dramatic examples of structural patterns relevant to the field of organic electronics illustrate that DFTB delivers erroneous (i.e., qualitatively wrong) results involving spurious binding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa