Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 491, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790026

RESUMO

Intercellular mitochondrial transfer (MT) is a newly discovered form of cell-to-cell signalling involving the active incorporation of healthy mitochondria into stressed/injured recipient cells, contributing to the restoration of bioenergetic profile and cell viability, reduction of inflammatory processes and normalisation of calcium dynamics. Recent evidence has shown that MT can occur through multiple cellular structures and mechanisms: tunneling nanotubes (TNTs), via gap junctions (GJs), mediated by extracellular vesicles (EVs) and other mechanisms (cell fusion, mitochondrial extrusion and migrasome-mediated mitocytosis) and in different contexts, such as under physiological (tissue homeostasis and stemness maintenance) and pathological conditions (hypoxia, inflammation and cancer). As Mesenchimal Stromal/ Stem Cells (MSC)-mediated MT has emerged as a critical regulatory and restorative mechanism for cell and tissue regeneration and damage repair in recent years, its potential in stem cell therapy has received increasing attention. In particular, the potential therapeutic role of MSCs has been reported in several articles, suggesting that MSCs can enhance tissue repair after injury via MT and membrane vesicle release. For these reasons, in this review, we will discuss the different mechanisms of MSCs-mediated MT and therapeutic effects on different diseases such as neuronal, ischaemic, vascular and pulmonary diseases. Therefore, understanding the molecular and cellular mechanisms of MT and demonstrating its efficacy could be an important milestone that lays the foundation for future clinical trials.


Assuntos
Metabolismo Energético , Células-Tronco Mesenquimais , Mitocôndrias , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Animais , Transplante de Células-Tronco Mesenquimais , Doença
2.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430590

RESUMO

Prostaglandin analogues (PGAs), including bimatoprost (BIM), are generally the first-line therapy for glaucoma due to their greater efficacy, safety, and convenience of use. Commercial solutions of preservative-free BIM (BIM 0.03% and 0.01%) are already available, although their topical application may result in ocular discomfort. This study aimed to evaluate the in vitro effects of preservative-free BIM 0.03% vs. 0.01% in the human conjunctival epithelial (HCE) cell line. Our results showed that long-term exposure to BIM 0.03% ensues a significant decrease in cell proliferation and viability. Furthermore, these events were associated with cell cycle arrest, apoptosis, and alterations of ΔΨm. BIM 0.01% does not exhibit cytotoxicity, and no negative influence on conjunctival cell growth and viability or mitochondrial activity has been observed. Short-time exposure also demonstrates the ability of BIM 0.03% to trigger reactive oxygen species (ROS) production and mitochondrial hyperpolarisation. An in silico drug network interaction was also performed to explore known and predicted interactions of BIM with proteins potentially involved in mitochondrial membrane potential dissipation. Our findings overall strongly reveal better cellular tolerability of BIM 0.01% vs. BIM 0.03% in HCE cells.


Assuntos
Túnica Conjuntiva , Conservantes Farmacêuticos , Humanos , Bimatoprost/farmacologia , Conservantes Farmacêuticos/farmacologia , Oxirredução
3.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628239

RESUMO

Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM.


Assuntos
Cetoconazol , Miconazol , Animais , Apoptose , Glutationa/metabolismo , Imidazóis/metabolismo , Imidazóis/farmacologia , Cetoconazol/farmacologia , Masculino , Mamíferos/metabolismo , Camundongos , Miconazol/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
J Gen Virol ; 96(Pt 3): 607-613, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25398789

RESUMO

Human papillomaviruses (HPVs) have been detected in urban wastewaters, demonstrating that epitheliotropic viruses can find their way into sewage through the washing of skin and mucous membranes. Papillomavirus shedding through faeces is still an unexplored issue. The objective of the present study was to investigate the presence of HPVs in stool samples. We analysed 103 faecal specimens collected from hospitalized patients with diarrhoea using validated primers able to detect α, ß and γ HPVs. PCR products underwent sequencing analysis and sequences were aligned to reference genomes from the Papillomavirus Episteme database. A total of 15 sequences were characterized from the faecal samples. Thirteen samples (12.6 %) were positive for nine genotypes belonging to the α and ß genera: HPV32 (LR, α1), HPV39 (HR, α7), HPV44 (LR, α10), HPV8 (ß1), HPV9, HPV23, HPV37, HPV38 and HPV120 (ß2). Two putative novel genotypes of the ß genus, species 1 and 2, were also detected. The tissue(s) of origin is unknown, since faeces can collect HPVs originating from or passing through the entire digestive system. To our knowledge, this is the first investigation on the occurrence and diversity of HPVs in faecal samples. Results from this study demonstrate that HPVs can find their way into sewage as a consequence of shedding in the faeces. This highlights the need for further studies aimed at understanding the prevalence of HPV in different water environments and the potential for waterborne transmission.


Assuntos
Alphapapillomavirus/isolamento & purificação , Betapapillomavirus/isolamento & purificação , Fezes/virologia , Infecções por Papillomavirus/virologia , Diarreia/virologia , Humanos , Dados de Sequência Molecular , Águas Residuárias/virologia
5.
Antioxidants (Basel) ; 12(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37371872

RESUMO

Triazole and imidazole fungicides are an emerging class of contaminants with an increasing and ubiquitous presence in the environment. In mammals, their reproductive toxicity has been reported. Concerning male reproduction, a combinatorial activity of tebuconazole (TEB; triazole fungicide) and econazole (ECO; imidazole compound) in inducing mitochondrial impairment, energy depletion, cell cycle arrest, and the sequential activation of autophagy and apoptosis in Sertoli TM4 cells (SCs) has recently been demonstrated. Given the strict relationship between mitochondrial activity and reactive oxygen species (ROS), and the causative role of oxidative stress (OS) in male reproductive dysfunction, the individual and combined potential of TEB and ECO in inducing redox status alterations and OS was investigated. Furthermore, considering the impact of cyclooxygenase (COX)-2 and tumor necrosis factor-alpha (TNF-α) in modulating male fertility, protein expression levels were assessed. In the present study, we demonstrate that azoles-induced cytotoxicity is associated with a significant increase in ROS production, a drastic reduction in superoxide dismutase (SOD) and GSH-S-transferase activity levels, and a marked increase in the levels of oxidized (GSSG) glutathione. Exposure to azoles also induced COX-2 expression and increased TNF-α production. Furthermore, pre-treatment with N-acetylcysteine (NAC) mitigates ROS accumulation, attenuates COX-2 expression and TNF-α production, and rescues SCs from azole-induced apoptosis, suggesting a ROS-dependent molecular mechanism underlying the azole-induced cytotoxicity.

6.
Antioxidants (Basel) ; 11(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35740096

RESUMO

Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant "phase 2" enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson's disease and Alzheimer's disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.

7.
Eur J Cell Biol ; 101(3): 151225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35453093

RESUMO

Metabolic alterations have been observed in many cancer types. The deregulated metabolism has thus become an emerging hallmark of the disease, where the metabolism is frequently rewired to aerobic glycolysis. This has led to the concept of "metabolic reprogramming", which has therefore been extensively studied. Over the years, it has been characterized the enhancement of aerobic glycolysis, where key mutations in some of the enzymes of the TCA cycle, and the increased glucose uptake, are used by cancer cells to achieve a "metabolic phenotype" useful to gain a proliferation advantage. Many studies have highlighted in detail the signaling pathways and the molecular mechanisms responsible for the glycolytic switch. However, glycolysis is not the only metabolic process that cancer cells rely on. Oxidative Phosphorylation (OXPHOS), gluconeogenesis or the beta-oxidation of fatty acids (FAO) may be involved in the development and progression of several tumors. In some cases, these metabolisms are even more crucial than aerobic glycolysis for the tumor survival. This review will focus on the contribution of these alterations of metabolism to the development and survival of cancers. We will also analyze the molecular mechanisms by which the balance between these metabolic processes may be regulated, as well as some of the therapeutical approaches that can derive from their study.


Assuntos
Neoplasias , Fosforilação Oxidativa , Metabolismo Energético , Ácidos Graxos/metabolismo , Glicólise , Humanos , Mitocôndrias/metabolismo , Neoplasias/patologia
8.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35745633

RESUMO

The study investigated the inhibitory activity of protocetraric and salazinic acids against SARS-CoV-2 3CLpro. The kinetic parameters were determined by microtiter plate-reading fluorimeter using a fluorogenic substrate. The cytotoxic activity was tested on murine Sertoli TM4 cells. In silico analysis was performed to ascertain the nature of the binding with the 3CLpro. The compounds are slow-binding inactivators of 3CLpro with a Ki of 3.95 µM and 3.77 µM for protocetraric and salazinic acid, respectively, and inhibitory efficiency kinact/Ki at about 3 × 10-5 s-1µM-1. The mechanism of inhibition shows that both compounds act as competitive inhibitors with the formation of a stable covalent adduct. The viability assay on epithelial cells revealed that none of them shows cytotoxicity up to 80 µM, which is well below the Ki values. By molecular modelling, we predicted that the catalytic Cys145 makes a nucleophilic attack on the carbonyl carbon of the cyclic ester common to both inhibitors, forming a stably acyl-enzyme complex. The computational and kinetic analyses confirm the formation of a stable acyl-enzyme complex with 3CLpro. The results obtained enrich the knowledge of the already numerous biological activities exhibited by lichen secondary metabolites, paving the way for developing promising scaffolds for the design of cysteine enzyme inhibitors.

9.
Cells ; 11(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011593

RESUMO

Mitochondria are multifunctional subcellular organelles essential for cellular energy homeostasis and apoptotic cell death. It is, therefore, crucial to maintain mitochondrial fitness. Mitophagy, the selective removal of dysfunctional mitochondria by autophagy, is critical for regulating mitochondrial quality control in many physiological processes, including cell development and differentiation. On the other hand, both impaired and excessive mitophagy are involved in the pathogenesis of different ageing-associated diseases such as neurodegeneration, cancer, myocardial injury, liver disease, sarcopenia and diabetes. The best-characterized mitophagy pathway is the PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway. However, other Parkin-independent pathways are also reported to mediate the tethering of mitochondria to the autophagy apparatuses, directly activating mitophagy (mitophagy receptors and other E3 ligases). In addition, the existence of molecular mechanisms other than PINK1-mediated phosphorylation for Parkin activation was proposed. The adenosine5'-monophosphate (AMP)-activated protein kinase (AMPK) is emerging as a key player in mitochondrial metabolism and mitophagy. Beyond its involvement in mitochondrial fission and autophagosomal engulfment, its interplay with the PINK1-Parkin pathway is also reported. Here, we review the recent advances in elucidating the canonical molecular mechanisms and signaling pathways that regulate mitophagy, focusing on the early role and spatial specificity of the AMPK/ULK1 axis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Mitofagia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Modelos Biológicos , Fagossomos/metabolismo
10.
Transl Vis Sci Technol ; 10(6): 8, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34111255

RESUMO

Purpose: The study investigates the regulatory effects exhibited by lysate of Lactobacillus sakei pro-Bio65 (4%; L.SK) on the human conjunctival epithelial (HCE) cell line. Methods: Trypan blue and methylthiazol tetrazolium (MTT) methods were used to assess cell growth and viability. Mitochondrial membrane potential was assessed by JC-1 staining and cytofluorimetric detection methods. The antioxidant pattern and the intracellular reactive oxygen species (ROS) levels were analyzed by spectrophotometric and spectrofluorimetric methods. NF-κB luciferase activity was quantified by luminometric detection. NF-κB nuclear translocation, as well as mitochondrial morphology, were investigated by immunofluorescence using confocal microscopy. Cytokines and COX2 expression levels were determined by Western blot analyses. Results: This study demonstrates that L.SK exposure does not influence HCE cell proliferation and viability in vitro. L.SK paraprobiotic induces mild-low levels of intracellular ROS. It is coupled to changes in the mitochondrial membrane potential (ΔΨm), in a context of a regular mitochondrial-network organization. The negative modulation of tumor necrosis factor alpha (TNF-α) expression levels and rising antioxidant defense efficiency, mediated by the upregulation of glutathione (GSH) and increased antioxidant enzymatic activities, were observed. Conclusions: This study demonstrates that L.SK empowers the antioxidant endogenous efficiency of HCE cells, by the upregulation of the GSH content and the enzymatic antioxidant pattern, and concurrently reduces TNF-α protein expression. Translational Relevance: Although the obtained in vitro results should be confirmed by in vivo investigations, our data suggest the possibility of L.SK paraprobiotic application for promoting eye health, exploring its use as an endogen antioxidant system inducer in preventing and treating different oxidative stress-based, inflammatory, and age-related conditions.


Assuntos
Latilactobacillus sakei , Fator de Necrose Tumoral alfa , Antioxidantes , Glutationa/metabolismo , Humanos , Latilactobacillus sakei/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo
11.
Antibiotics (Basel) ; 10(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34439002

RESUMO

The dramatic intensification of antimicrobial resistance occurrence in pathogenic bacteria concerns the global community. The revitalisation of inactive antibiotics is, at present, the only way to go through this health system crisis and the use of antimicrobial adjuvants is turning out the most promising approach. Due to their low toxicity, eco-friendly characteristics and antimicrobial activity, amphoteric surfactants are good candidates. This study investigated the adjuvant potentialities of commercial acyclic and newly cyclic N-oxide surfactants combined with therapeutically available antibiotics against MDR methicillin-resistant Staphylococcus aureus (MRSA). The safety profile of the new cyclic compounds, compared to commercial surfactants, was preliminarily assessed, evaluating the cytotoxicity on human peripheral mononuclear blood cells and the haemolysis in human red blood cells. The compounds show an efficacious antimicrobial activity strongly related to the length of the carbon atom chain. In drug-drug interaction assays, all surfactants act synergistically, restoring sensitivity to oxacillin in MRSA, with dodecyl acyclic and cyclic derivatives being the most effective. After evaluating the cytotoxicity and considering the antimicrobial action, the most promising compound is the L-prolinol amine-oxide C12NOX. These findings suggest that the combination of antibiotics with amphoteric surfactants is a valuable therapeutic option for topical infections sustained by multidrug-resistant S. aureus.

12.
Transl Vis Sci Technol ; 9(8): 4, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32855851

RESUMO

Purpose: This study aims to investigate the antifungal activity and mechanism of action of ozonized oil eye drops in liposomes (Ozodrop), commercialized as eye lubricant for the treatment of dry eye syndrome and eye inflammation. The activity was tested against four clinical Candida species: Calbicans,Cglabrata,Ckrusei, and Corthopsilosis. Methods: The antifungal activity of the eye drop solution was ascertained by microdilution method in accordance with EUCAST obtaining the minimum inhibitory concentration for Ozodrop. The mechanism of action was further investigated in Calbicans by measuring cell vitality, intracellular reactive oxygen species production, levels of cellular and mitochondrial (∆Ψm) membrane potential, and the extent of membrane lipid peroxidation. Results: All Candida isolates were susceptible to Ozodrop with minimum inhibitory concentration values ranging from 0.195% (v/v) for Cglabrata to 6.25% (v/v) for Corthopsilosis. After 1 hour of exposure at the minimum inhibitory concentration value about 30% of cells were killed, reaching about 70% at the highest Ozodrop value. After Ozodrop exposure, Calbicans showed cell membrane depolarization, increased levels of lipid peroxidation, depolarized ∆Ψm, and increased reactive oxygen species generation. Conclusions: The significant increases in reactive oxygen species production cause the accumulation of reactive oxygen species-associated damages leading to progressive Candida cell dysfunction. Translational Relevance: The antifungal activity of Ozodrop was demonstrated at concentrations several times lower than the concentration that can be retrieved in ocular surface after its application. The antifungal activity of the eye drops Ozodrop would represent an interesting off-label indication for a product basically conceived as an eye lubricant.


Assuntos
Candida , Lipossomos , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Soluções Oftálmicas
13.
Toxicol Sci ; 169(1): 209-223, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698772

RESUMO

Tebuconazole and Econazole are triazole and imidazole fungicides currently used worldwide. Although their reproductive toxicity in mammals has been described, their effect on male reproductive systems has been poorly investigated. As humans may be exposed to different azole compounds simultaneously, the combinational in vitro toxicity of Tebuconazole and Econazole (MIX) in mouse Sertoli TM4 cells was investigated. This study demonstrates that Tebuconazole (40 µM) and Econazole (20 µM) act synergistically in mediating decrease of mitochondrial membrane potential (ΔΨm) and changes in mitochondrial morphology. These events were associated with ATP depletion, cell cycle arrest, and sequential activation of autophagy and apoptosis. Remarkable differences on other parameters such as AMP/ATP ratio and adenylate energy charge were observed. Pharmacological inhibition of autophagy by bafilomycin A1 leads to enhanced MIX-induced apoptosis suggesting an adaptive cytoprotective function for MIX-modulated autophagy. Finally, a possible role of AMPK/ULK1 axis in mediating adaptive signalling cascades in response to energy stress was hypothesized. Consistently, ULK1 Ser 555 phosphorylation occurred in response to AMPK (Thr 172) activation. In conclusion, Tebuconazole and Econazole combination, at concentrations relevant for dermal and clinical exposure, induces a severe mitochondrial stress in SCs. Consequently, a prolonged exposure may affect the ability of the cells to re-establish homeostasis and trigger apoptosis.


Assuntos
Antifúngicos/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Econazol/toxicidade , Metabolismo Energético/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Mitocôndrias/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Triazóis/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Transdução de Sinais
14.
Biomed Res Int ; 2018: 6319414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30310818

RESUMO

Parity and nulliparity exert opposite effects on women's health, as parity is considered a protective factor for several reproductive diseases. This study is aimed at determining if ovarian VEGF and VEGFR2 expression are differently modulated in the ovaries of parous and nulliparous mice. To this end primiparous and nulliparous fertile mice were sacrificed at postovulatory stage. Whole ovaries, corpus luteum, and residual stromal tissues were analyzed to assess VEGF/VEGFR2 expression levels. Ovarian mRNA amounts of Vegfa (120 and 164) and Vegfr2 were comparable between primiparous and nulliparous mice; both isoforms and receptor were accumulated mainly in corpus luteum tissues. VEGF 120 and 164 protein accumulation and distribution mirrored that of mRNA. Conversely, VEGFR2 protein content was significantly higher in ovaries of nulliparous mice and was more efficiently phosphorylated in ovaries of primiparous mice. In both groups, VEGFR2 was preferentially expressed in corpus luteum, while its phosphorylated form was equally distributed in two somatic compartments. We suggest that parity influences VEGFR2/phospho-VEGFR2 expression and tissue distribution. This difference could be part of a more complex mechanism that at least in mice is activated after the first pregnancy and likely aims to preserve female health.


Assuntos
Ovário/metabolismo , Paridade/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Fertilidade/fisiologia , Camundongos , Ovário/química , Ovário/fisiologia , Gravidez , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa