Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 47(8): 3937-3956, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30820548

RESUMO

RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , RNA Polimerase III/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Idoso , Elementos Alu/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Polimerase III/antagonistas & inibidores , RNA Polimerase III/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Diabetes Obes Metab ; 19(8): 1078-1087, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28206714

RESUMO

AIM: Small molecule activators of glucokinase (GKAs) have been explored extensively as potential anti-hyperglycaemic drugs for type 2 diabetes (T2D). Several GKAs were remarkably effective in lowering blood glucose during early therapy but then lost their glycaemic efficacy chronically during clinical trials. MATERIALS AND METHODS: We used rat hepatocytes to test the hypothesis that GKAs raise hepatocyte glucose 6-phosphate (G6P, the glucokinase product) and down-stream metabolites with consequent repression of the liver glucokinase gene ( Gck). We compared a GKA with metformin, the most widely prescribed drug for T2D. RESULTS: Treatment of hepatocytes with 25 mM glucose raised cell G6P, concomitantly with Gck repression and induction of G6pc (glucose 6-phosphatase) and Pklr (pyruvate kinase). A GKA mimicked high glucose by raising G6P and fructose-2,6-bisphosphate, a regulatory metabolite, causing a left-shift in glucose responsiveness on gene regulation. Fructose, like the GKA, repressed Gck but modestly induced G6pc. 2-Deoxyglucose, which is phosphorylated by glucokinase but not further metabolized caused Gck repression but not G6pc induction, implicating the glucokinase product in Gck repression. Metformin counteracted the effect of high glucose on the elevated G6P and fructose 2,6-bisphosphate and on Gck repression, recruitment of Mlx-ChREBP to the G6pc and Pklr promoters and induction of these genes. CONCLUSIONS: Elevation in hepatocyte G6P and downstream metabolites, with consequent liver Gck repression, is a potential contributing mechanism to the loss of GKA efficacy during chronic therapy. Cell metformin loads within the therapeutic range attenuate the effect of high glucose on G6P and on glucose-regulated gene expression.


Assuntos
Ativadores de Enzimas/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucoquinase/metabolismo , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Tiazóis/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Dieta Ocidental/efeitos adversos , Frutose/administração & dosagem , Frutose/efeitos adversos , Frutosedifosfatos/metabolismo , Glucoquinase/antagonistas & inibidores , Glucoquinase/química , Glucoquinase/genética , Glucose-6-Fosfatase/antagonistas & inibidores , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfato/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Camundongos Endogâmicos C3H , Sobrepeso/enzimologia , Sobrepeso/metabolismo , Sobrepeso/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/química , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Ratos Wistar
3.
BMC Cancer ; 15: 905, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26573593

RESUMO

BACKGROUND: BRF2 is a transcription factor required for synthesis of a small group of non-coding RNAs by RNA polymerase III. Overexpression of BRF2 can transform human mammary epithelial cells. In both breast and lung cancers, the BRF2 gene is amplified and overexpressed and may serve as an oncogenic driver. Furthermore, elevated BRF2 can be independently prognostic of unfavorable survival. Dietary soy isoflavones increase metastasis to lungs in a model of breast cancer and a recent study reported significantly increased cell proliferation in breast cancer patients who used soy supplementation. The soy isoflavone daidzein is a major food-derived phytoestrogen that is structurally similar to estrogen. The putative estrogenic effect of soy raises concern that high consumption of soy foods by breast cancer patients may increase tumor growth. METHODS: Expression of BRF2 RNA and protein was assayed in ER-positive or -negative human breast cancer cells after exposure to daidzein. We also measured mRNA stability, promoter methylation and response to the demethylating agent 5-azacytidine. In addition, expression was compared between mice fed diets enriched or deprived of isoflavones. RESULTS: We demonstrate that the soy isoflavone daidzein specifically stimulates expression of BRF2 in ER-positive breast cancer cells, as well as the related factor BRF1. Induction is accompanied by increased levels of non-coding RNAs that are regulated by BRF2 and BRF1. Daidzein treatment stabilizes BRF2 and BRF1 mRNAs and selectively decreases methylation of the BRF2 promoter. Functional significance of demethylation is supported by induction of BRF2 by the methyltransferase inhibitor 5-azacytidine. None of these effects are observed in an ER-negative breast cancer line, when tested in parallel with ER-positive breast cancer cells. In vivo relevance is suggested by the significantly elevated levels of BRF2 mRNA detected in female mice fed a high-isoflavone commercial diet. In striking contrast, BRF2 and BRF1 mRNA levels are suppressed in matched male mice fed the same isoflavone-enriched diet. CONCLUSIONS: The BRF2 gene that is implicated in cancer can be induced in human breast cancer cells by the isoflavone daidzein, through promoter demethylation and/or mRNA stabilization. Dietary isoflavones may also induce BRF2 in female mice, whereas the converse occurs in males.


Assuntos
Neoplasias da Mama/metabolismo , Isoflavonas/farmacologia , Proteínas de Neoplasias/metabolismo , Fitoestrógenos/farmacologia , Fator de Transcrição TFIIIB/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Regiões Promotoras Genéticas/efeitos dos fármacos , Proto-Oncogene Mas , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIIIB/genética
4.
Am J Physiol Endocrinol Metab ; 305(10): E1255-65, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24045866

RESUMO

Plasma levels of uric acid, the final product of purine degradation in humans, are elevated in metabolic syndrome and are strongly associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD). Hepatic and blood levels of purine metabolites (inosine, hypoxanthine, and xanthine) are also altered in pathophysiological states. We optimized a rat hepatocyte model to test the hypothesis that the production of uric acid by hepatocytes is a potential marker of compromised homeostasis of hepatocellular inorganic phosphate (Pi) and/or ATP. The basal rate of uric acid production from endogenous substrates in rat hepatocytes was comparable to that in human liver and was <10% of the maximum rate with saturating concentrations of purine substrates. It was marginally (~20%) decreased by insulin and increased by glucagon but was stimulated more than twofold by substrates (fructose and glycerol) that lower both cell ATP and Pi, and by inhibitors of mitochondrial respiration (complexes I, III, and V) that lower ATP but raise cell Pi. Clearance of inosine and its degradation to uric acid were also inhibited by cell Pi depletion. Analysis of gene expression in NAFLD biopsies showed an association between mRNA expression of GCKR, the glucokinase regulatory protein that is functionally linked to uric acid production, and mRNA expression of the phosphate transporters encoded by SLC17A1/3. Uric acid production by hepatocytes is a very sensitive index of ATP depletion irrespective of whether cell Pi is lowered or raised. This suggests that raised plasma uric acid may be a marker of compromised hepatic ATP homeostasis.


Assuntos
Trifosfato de Adenosina/metabolismo , Hepatócitos/metabolismo , Doenças Metabólicas/metabolismo , Ácido Úrico/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Indicadores Básicos de Saúde , Células Hep G2 , Homeostase/fisiologia , Humanos , Masculino , Doenças Metabólicas/diagnóstico , Camundongos , Camundongos Endogâmicos C3H , Ratos , Ratos Wistar , Sensibilidade e Especificidade
5.
Biochem J ; 443(1): 111-23, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22214556

RESUMO

Glucose metabolism in the liver activates the transcription of various genes encoding enzymes of glycolysis and lipogenesis and also G6pc (glucose-6-phosphatase). Allosteric mechanisms involving glucose 6-phosphate or xylulose 5-phosphate and covalent modification of ChREBP (carbohydrate-response element-binding protein) have been implicated in this mechanism. However, evidence supporting an essential role for a specific metabolite or pathway in hepatocytes remains equivocal. By using diverse substrates and inhibitors and a kinase-deficient bisphosphatase-active variant of the bifunctional enzyme PFK2/FBP2 (6-phosphofructo-2-kinase-fructose-2,6-bisphosphatase), we demonstrate an essential role for fructose 2,6-bisphosphate in the induction of G6pc and other ChREBP target genes by glucose. Selective depletion of fructose 2,6-bisphosphate inhibits glucose-induced recruitment of ChREBP to the G6pc promoter and also induction of G6pc by xylitol and gluconeogenic precursors. The requirement for fructose 2,6-bisphosphate for ChREBP recruitment to the promoter does not exclude the involvement of additional metabolites acting either co-ordinately or at downstream sites. Glucose raises fructose 2,6-bisphosphate levels in hepatocytes by reversing the phosphorylation of PFK2/FBP2 at Ser32, but also independently of Ser32 dephosphorylation. This supports a role for the bifunctional enzyme as the phosphometabolite sensor and for its product, fructose 2,6-bisphosphate, as the metabolic signal for substrate-regulated ChREBP-mediated expression of G6pc and other ChREBP target genes.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Frutosedifosfatos/metabolismo , Regulação da Expressão Gênica , Glucose-6-Fosfatase/genética , Glucose/fisiologia , Hepatócitos/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Cultivadas , Desoxiglucose/farmacologia , Di-Hidroxiacetona/farmacologia , Glucose/metabolismo , Glucose/farmacologia , Glucose-6-Fosfatase/metabolismo , Glicólise , Hepatócitos/enzimologia , Hexosaminas/metabolismo , Masculino , Fosfofrutoquinase-2/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Ratos Wistar , Xilitol/farmacologia
6.
Ann Clin Transl Neurol ; 10(3): 302-311, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36728340

RESUMO

Across its clinical development program, ocrelizumab demonstrated efficacy in improving clinical outcomes in multiple sclerosis, including annualized relapse rates and confirmed disability progression. However, as with any new treatment, it was unclear how this efficacy would translate into real-world clinical practice. The objective of this study was to systematically collate the published real-world clinical effectiveness data for ocrelizumab in relapsing remitting multiple sclerosis and primary progressive multiple sclerosis. A search strategy was developed in MEDLINE and Embase to identify articles reporting real-world evidence in people with relapsing remitting multiple sclerosis or primary progressive multiple sclerosis receiving treatment with ocrelizumab. The search focused on English language articles only but was not limited by the country in which the study was conducted or the time frame of the study. Additional manual searches of relevant websites were also performed. Fifty-two studies were identified reporting relevant evidence. Real-world effectiveness data for ocrelizumab were consistently favorable, with reductions in relapse rate and disease progression rates similar to those reported in the OPERA I/OPERA II and ORATORIO clinical trials, including in studies with more diverse patient populations not well represented in the pivotal trials. Although direct comparisons are confounded by lack of randomization of treatments, outcomes reported suggest that ocrelizumab has a similar or greater efficacy than other therapy options. Initial real-world effectiveness data for ocrelizumab appear favorable and consistent with results reported in clinical trials, providing clinicians with an efficacious option to treat patients with multiple sclerosis.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Recidiva
7.
Sci Rep ; 9(1): 5120, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914656

RESUMO

Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Células PC-3 , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Supressoras de Tumor/genética
8.
Mol Cell Biol ; 33(4): 725-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23207906

RESUMO

In the liver, a high glucose concentration activates transcription of genes encoding glucose 6-phosphatase and enzymes for glycolysis and lipogenesis by elevation in phosphorylated intermediates and recruitment of the transcription factor ChREBP (carbohydrate response element binding protein) and its partner, Mlx, to gene promoters. A proposed function for this mechanism is intracellular phosphate homeostasis. In extrahepatic tissues, MondoA, the paralog of ChREBP, partners with Mlx in transcriptional induction by glucose. We tested for glucose induction of regulatory proteins of the glycogenic pathway in hepatocytes and identified the glycogen-targeting proteins, G(L) and PTG (protein targeting to glycogen), as being encoded by Mlx-dependent glucose-inducible genes. PTG induction by glucose was MondoA dependent but ChREBP independent and was enhanced by forced elevation of fructose 2,6-bisphosphate and by additional xylitol-derived metabolites. It was counteracted by selective depletion of fructose 2,6-bisphosphate with a bisphosphatase-active kinase-deficient variant of phosphofructokinase 2/fructosebisphosphatase 2, which prevented translocation of MondoA to the nucleus and recruitment to the PTG promoter. We identify a novel role for MondoA in the liver and demonstrate that elevated fructose 2,6-bisphosphate is essential for recruitment of MondoA to the PTG promoter. Phosphometabolite activation of MondoA and ChREBP and their recruitment to target genes is consistent with a mechanism for gene regulation to maintain intracellular phosphate homeostasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Frutosedifosfatos/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Hepatócitos/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Regiões Promotoras Genéticas , Transporte Proteico , Ratos , Ratos Wistar , Transativadores/metabolismo
9.
Diabetes ; 61(1): 49-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106156

RESUMO

Hepatic autonomic nerves regulate postprandial hepatic glucose uptake, but the signaling pathways remain unknown. We tested the hypothesis that serotonin (5-hydroxytryptamine [5-HT]) exerts stimulatory and inhibitory effects on hepatic glucose disposal. Ligands of diverse 5-HT receptors were used to identify signaling pathway(s) regulating glucose metabolism in hepatocytes. 5-HT had stimulatory and inhibitory effects on glycogen synthesis in hepatocytes mediated by 5-HT1/2A and 5-HT2B receptors, respectively. Agonists of 5-HT1/2A receptors lowered blood glucose and increased hepatic glycogen after oral glucose loading and also stimulated glycogen synthesis in freshly isolated hepatocytes with greater efficacy than 5-HT. This effect was blocked by olanzapine, an antagonist of 5-HT1/2A receptors. It was mediated by activation of phosphorylase phosphatase, inactivation of glycogen phosphorylase, and activation of glycogen synthase. Unlike insulin action, it was not associated with stimulation of glycolysis and was counteracted by cyclin-dependent kinase (cdk) inhibitors. A role for cdk5 was supported by adaptive changes in the coactivator protein p35 and by elevated glycogen synthesis during overexpression of p35/cdk5. These results support a novel mechanism for serotonin stimulation of hepatic glycogenesis involving cdk5. The opposing effects of serotonin, mediated by distinct 5-HT receptors, could explain why drugs targeting serotonin function can cause either diabetes or hypoglycemia in humans.


Assuntos
Quinase 5 Dependente de Ciclina/fisiologia , Glicogênio Hepático/biossíntese , Serotonina/fisiologia , Animais , Células Cultivadas , Quinase 5 Dependente de Ciclina/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Indóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Piridinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Wistar , Receptores de Serotonina/metabolismo , Receptores de Serotonina/fisiologia , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Tetra-Hidronaftalenos/farmacologia
10.
Diabetes ; 60(12): 3110-20, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22013014

RESUMO

OBJECTIVE: The induction of hepatic glucose 6-phosphatase (G6pc) by glucose presents a paradox of glucose-induced glucose intolerance. We tested whether glucose regulation of liver gene expression is geared toward intracellular homeostasis. RESEARCH DESIGN AND METHODS: The effect of glucose-induced accumulation of phosphorylated intermediates on expression of glucokinase (Gck) and its regulator Gckr was determined in hepatocytes. Cell ATP and uric acid production were measured as indices of cell phosphate homeostasis. RESULTS: Accumulation of phosphorylated intermediates in hepatocytes incubated at elevated glucose induced rapid and inverse changes in Gck (repression) and Gckr (induction) mRNA concomitantly with induction of G6pc, but had slower effects on the Gckr-to-Gck protein ratio. Dynamic metabolic labeling in mice and liver proteome analysis confirmed that Gckr and Gck are low-turnover proteins. Involvement of Max-like protein X in glucose-mediated Gck-repression was confirmed by chromatin immunoprecipitation analysis. Elevation of the Gck-to-Gckr ratio in hepatocytes was associated with glucose-dependent ATP depletion and elevated urate production confirming compromised phosphate homeostasis. CONCLUSIONS: The lowering by glucose of the Gck-to-Gckr ratio provides a potential explanation for the impaired hepatic glucose uptake in diabetes. Elevated uric acid production at an elevated Gck-to-Gckr ratio supports a role for glucose regulation of gene expression in hepatic phosphate homeostasis.


Assuntos
Glucoquinase/metabolismo , Glucose-6-Fosfatase/metabolismo , Glucose/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Glucoquinase/genética , Glucose-6-Fosfatase/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/genética , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa