Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063012

RESUMO

Single-walled carbon nanotubes (SWCNTs) emerge as promising novel carbon-based nanoparticles for use in biomedicine, pharmacology and precision agriculture. They were shown to penetrate cell walls and membranes and to physically interact and exchange electrons with photosynthetic complexes in vitro. Here, for the first time, we studied the concentration-dependent effect of foliar application of copolymer-grafted SWCNTs on the structural and functional characteristics of intact pea plants. The lowest used concentration of 10 mg L-1 did not cause any harmful effects on the studied leaf characteristics, while abundant epicuticular wax generation on both leaf surfaces was observed after 300 mg L-1 treatment. Swelling of both the granal and the stromal regions of thylakoid membranes was detected after application of 100 mg L-1 and was most pronounced after 300 mg L-1. Higher SWCNT doses lead to impaired photosynthesis in terms of lower proton motive force generation, slower generation of non-photochemical quenching and reduced zeaxanthin content; however, the photosystem II function was largely preserved. Our results clearly indicate that SWCNTs affect the photosynthetic apparatus in a concentration-dependent manner. Low doses (10 mg L-1) of SWCNTs appear to be a safe suitable object for future development of nanocarriers for substances that are beneficial for plant growth.


Assuntos
Cloroplastos/ultraestrutura , Nanotubos de Carbono/química , Fotossíntese , Pisum sativum/fisiologia , Pisum sativum/ultraestrutura , Folhas de Planta/anatomia & histologia , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Permeabilidade da Membrana Celular , Clorofila/metabolismo , Fluorescência , Nanotubos de Carbono/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/ultraestrutura , Prótons , Tilacoides/metabolismo , Fatores de Tempo , Xantofilas/metabolismo
2.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641502

RESUMO

Single-walled carbon nanotubes (SWCNT) have recently been attracting the attention of plant biologists as a prospective tool for modulation of photosynthesis in higher plants. However, the exact mode of action of SWCNT on the photosynthetic electron transport chain remains unknown. In this work, we examined the effect of foliar application of polymer-grafted SWCNT on the donor side of photosystem II, the intersystem electron transfer chain and the acceptor side of photosystem I. Analysis of the induction curves of chlorophyll fluorescence via JIP test and construction of differential curves revealed that SWCNT concentrations up to 100 mg/L did not affect the photosynthetic electron transport chain. SWCNT concentration of 300 mg/L had no effect on the photosystem II donor side but provoked inactivation of photosystem II reaction centres and slowed down the reduction of the plastoquinone pool and the photosystem I end acceptors. Changes in the modulated reflection at 820 nm, too, indicated slower re-reduction of photosystem I reaction centres in SWCNT-treated leaves. We conclude that SWCNT are likely to be able to divert electrons from the photosynthetic electron transport chain at the level of photosystem I end acceptors and plastoquinone pool in vivo. Further research is needed to unequivocally prove if the observed effects are due to specific interaction between SWCNT and the photosynthetic apparatus.


Assuntos
Nanotubos de Carbono , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/efeitos dos fármacos , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Nanotubos de Carbono/química , Pisum sativum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Polímeros/química
3.
Photosynth Res ; 144(2): 247-259, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32076913

RESUMO

Excitation energy transfer (EET) and trapping in Anabaena variabilis (PCC 7120) intact cells, isolated phycobilisomes (PBS) and photosystem I (PSI) complexes have been studied by picosecond time-resolved fluorescence spectroscopy at room temperature. Global analysis of the time-resolved fluorescence kinetics revealed two lifetimes of spectral equilibration in the isolated PBS, 30-35 ps and 110-130 ps, assigned primarily to energy transfer within the rods and between the rods and the allophycocyanin core, respectively. An additional intrinsic kinetic component with a lifetime of 500-700 ps was found, representing non-radiative decay or energy transfer in the core. Isolated tetrameric PSI complexes exhibited biexponential fluorescence decay kinetics with lifetimes of about 10 ps and 40 ps, representing equilibration between the bulk antenna chlorophylls with low-energy "red" states and trapping of the equilibrated excitations, respectively. The cascade of EET in the PBS and in PSI could be resolved in intact filaments as well. Virtually all energy absorbed by the PBS was transferred to the photosystems on a timescale of 180-190 ps.


Assuntos
Anabaena/química , Anabaena/metabolismo , Complexo de Proteína do Fotossistema I/química , Ficobilissomas/química , Transferência de Energia , Fluorescência , Cinética , Complexo de Proteína do Fotossistema I/metabolismo , Ficobilissomas/metabolismo , Espectrometria de Fluorescência , Análise Espectral/métodos
4.
Photosynth Res ; 145(2): 179-188, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32720110

RESUMO

The major light-harvesting system in cyanobacteria, the phycobilisome, is an essential component of the photosynthetic apparatus that regulates the utilization of the natural light source-the Sun. Earlier works revealed that the thylakoid membrane composition and its physical properties might have an important role in antennas docking. Polyunsaturated lipids and xanthophylls are among the most significant modulators of the physical properties of thylakoid membranes. In the nature, the action of these molecules is orchestrated in response to environmental stimuli among which the growth temperature is the most influential. In order to further clarify the significance of thylakoid membrane physical properties for the phycobilisomes assembly (i.e. structural integrity) and their ability to efficiently direct the excitation energy towards the photosynthetic complexes, in this work, we utilize cyanobacterial Synechocystis sp. PCC 6803 mutants deficient in polyunsaturated lipids (AD mutant) and xanthophylls (RO mutant), as well as a strain depleted of both xanthophylls and polyunsaturated lipids (ROAD multiple mutant). For the first time, we discuss the effect of those mutations on the phycobilisomes assembly, integrity and functionality at optimal (30 °C) and moderate low (25 °C) and high (35 °C) temperatures. Our results show that xanthophyll depletion exerts a much stronger effect on both phycobilisome's integrity and the response of cells to growth at suboptimal temperatures than lipid unsaturation level. The strongest effects were observed for the combined ROAD mutant, which exhibited thermally destabilized phycobilisomes and a population of energetically uncoupled phycocyanin units.


Assuntos
Carotenoides/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Metabolismo dos Lipídeos , Mutação , Ficocianina/metabolismo , Synechocystis/genética , Temperatura , Tilacoides/metabolismo , Xantofilas/metabolismo
5.
J Bioenerg Biomembr ; 50(6): 425-435, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30607760

RESUMO

Thylakoids are highly protein-enriched membranes that harbor a number of multicomponent photosynthetic complexes. Similarly to other biological membranes the protein constituents are heterogeneously distributed laterally in the plane of the membrane, however the specific segregation into stacked (grana patches) and unstacked (stroma lamellae) membrane layers is a unique feature of the thylakoid. Both the lateral and the vertical arrangements of the integral membrane proteins within the three-dimensional thylakoid ultrastructure are thought to have important physiological function. In this work we explore the role of membrane stacking for the thermal stability of the photosynthetic complexes in thylakoid membranes. By means of circular dichroism and differential scanning calorimetry we demonstrate that the thermal stability of the monomeric and trimeric forms of the major light harvesting complex of photosystem II (LHCII) increases upon unstacking. This effect was suggested to be due to the detachment of LHCII from photosystem II and consequent attachment to photosystem I subunits and/or the fluidization of the lipid matrix upon unstacking. The changes in the physical properties of the protein and lipid membrane components upon unstacking result in strongly reduced photosystem II excitation energy utilization.


Assuntos
Luz , Lipídeos de Membrana/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/metabolismo , Dicroísmo Circular , Lipídeos de Membrana/química , Pisum sativum/química , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química
6.
Photosynth Res ; 137(1): 95-104, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29322483

RESUMO

Phycobilisomes (PBSs) are supramolecular pigment-protein complexes that serve as light-harvesting antennae in cyanobacteria. They are built up by phycobiliproteins assembled into allophycocyanin core cylinders (ensuring the physical interaction with the photosystems) and phycocyanin rods (protruding from the cores and having light-harvesting function), the whole PBSs structure being maintained by linker proteins. PBSs play major role in light-harvesting optimization in cyanobacteria; therefore, the characterization of their structural integrity in intact cells is of great importance. The present study utilizes differential scanning calorimetry and spectroscopy techniques to explore for the first time, the thermodynamic stability of PBSs in intact Synechocystis sp. PCC 6803 cells and to probe its alteration as a result of mutations or under different growth conditions. As a first step, we characterize the thermodynamic behavior of intact and dismantled PBSs isolated from wild-type cells (having fully assembled PBSs) and from CK mutant cells (that lack phycocyanin rods and contain only allophycocyanin cores), and identified the thermal transitions of phycocyanin and allophycocyanin units in vitro. Next, we demonstrate that in intact cells PBSs exhibit sharp, high amplitude thermal transition at about 63 °C that strongly depends on the structural integrity of the PBSs supercomplex. Our findings implicate that calorimetry could offer a valuable approach for the assessment of the influence of variety of factors affecting the stability and structural organization of phycobilisomes in intact cyanobacterial cells.


Assuntos
Ficobilissomas/química , Synechocystis/química , Varredura Diferencial de Calorimetria , Mutação , Synechocystis/genética , Termodinâmica
7.
Bioresour Technol ; 394: 130206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122998

RESUMO

Biophotovoltaic (BPV) devices are a potential decentralized and environmentally friendly energy source that harness solar energy through photosynthesis. BPV devices are self-regenerating, promising long-term usability. A practical strategy for enhancing BPV performance is to systematically screen for highly exoelectrogenic algal strains capable of generating large electric current density. In this study, a previously uncharacterized green algal strain - Parachlorella kessleri MACC-38 was found to generate over 340 µA mg-1 Chl cm-2. This output is approximately ten-fold higher than those of Chlamydomonas reinhardtii and Chlorella species. The current production of MACC-38 primarily originates from photosynthesis, and the strain maintains its physiological integrity throughout the process. MACC-38 exhibits unique traits such as low extracellular O2 and Fe(III) reduction, substantial copper (II) reduction, and significant extracellular acidification during current generation, contributing to its high productivity. The exoelectrogenic and growth characteristics of MACC-38 suggest that it could markedly boost BPV efficiency.


Assuntos
Chlamydomonas reinhardtii , Chlorella , Compostos Férricos , Fotossíntese
8.
Nanomaterials (Basel) ; 13(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110917

RESUMO

The engineering of carbon nanotubes in the last decades resulted in a variety of applications in electronics, electrochemistry, and biomedicine. A number of reports also evidenced their valuable application in agriculture as plant growth regulators and nanocarriers. In this work, we explored the effect of seed priming with single-walled carbon nanotubes grafted with Pluronic P85 polymer (denoted P85-SWCNT) on Pisum sativum (var. RAN-1) seed germination, early stages of plant development, leaf anatomy, and photosynthetic efficiency. We evaluated the observed effects in relation to hydro- (control) and P85-primed seeds. Our data clearly revealed that seed priming with P85-SWCNT is safe for the plant since it does not impair the seed germination, plant development, leaf anatomy, biomass, and photosynthetic activity, and even increases the amount of photochemically active photosystem II centers in a concentration-dependent manner. Only 300 mg/L concentration exerts an adverse effect on those parameters. The P85 polymer, however, was found to exhibit a number of negative effects on plant growth (i.e., root length, leaf anatomy, biomass accumulation and photoprotection capability), most probably related to the unfavorable interaction of P85 unimers with plant membranes. Our findings substantiate the future exploration and exploitation of P85-SWCNT as nanocarriers of specific substances promoting not only plant growth at optimal conditions but also better plant performance under a variety of environmental stresses.

9.
Sci Rep ; 10(1): 11959, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686730

RESUMO

The role of non-bilayer lipids and non-lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non-bilayer lipids are present in large amounts in all membranes; in energy-converting membranes they constitute about half of their total lipid content-yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water-soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH- and temperature-dependent changes of the lipid-phase behaviour, particularly the flexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fluorescence. The data demonstrate, for the first time in native membranes, the modulation of the activity of a water-soluble enzyme by a non-bilayer lipid phase.


Assuntos
Bicamadas Lipídicas/química , Oxirredutases/metabolismo , Tilacoides/química , Água/química , Varredura Diferencial de Calorimetria , Compostos de Epóxi/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Luz , Lipídeos/química , Espectroscopia de Ressonância Magnética , Solubilidade , Spinacia oleracea/metabolismo , Temperatura , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa