Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Polym ; 333: 121988, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494207

RESUMO

Most active pharmaceutical ingredients (APIs) suffer from poor water solubility, often keeping them from reaching patients. To overcome the issues of poor drug solubility and subsequent low bioavailability, amorphous solid dispersions (ASDs) have garnered much attention. Cellulose ester derivatives are of interest for ASD applications as they are benign, sustainable-based, and successful in commercial drug delivery systems, e.g. in osmotic pump systems and as commercial ASD polymers. Synthesis of carboxy-pendant cellulose esters is a challenge, due in part to competing reactions between carboxyls and hydroxyls, forming ester crosslinks. Herein we demonstrate proof-of-concept for a scalable synthetic route to simple, yet highly promising ASD polymers by esterifying cellulose polymers through ring-opening of cyclic succinic or glutaric anhydride. We describe the complexity of such ring-opening reactions, not previously well-described, and report ways to avoid gelation. We report synthesis, characterization, and preliminary in vitro ASD evaluations of fifteen such derivatives. Synthetic routes were designed to accommodate these criteria: no protecting groups, no metal catalysts, mild conditions with standard reagents, simple purification, and one-pot synthesis. Finally, these designed ASD polymers included members that maintained fast-crystallizing felodipine in solution and release it from an ASD at rather high 20 % drug loading (DL).


Assuntos
Celulose , Polímeros , Humanos , Solubilidade , Sistemas de Liberação de Medicamentos , Ésteres , Composição de Medicamentos , Liberação Controlada de Fármacos
2.
Carbohydr Polym ; 274: 118662, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34702481

RESUMO

Polysaccharides are abundant natural polymers, which in nature are at times covalently modified with peptides and proteins. Polysaccharide-protein or polysaccharide-peptide conjugates, natural or otherwise, may have increased solubility, improved emulsion properties, prolonged circulation time, reduced immunogenicity, and enhanced selectivity for targeting specific tissues compared to native peptides and proteins. In this paper, we will review recent advances in synthetic methods for producing polysaccharide-protein conjugates and discuss their advantages with a focus on drug targeting.


Assuntos
Proteoglicanas/síntese química , Sistemas de Liberação de Medicamentos , Solubilidade
3.
Acta Biomater ; 128: 186-200, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878472

RESUMO

Collagen microfiber-based constructs have garnered considerable attention for ligament, tendon, and other soft tissue repairs, yet with limited clinical translation due to strength, biocompatibility, scalable manufacturing, and other challenges. Crosslinking collagen fibers improves mechanical properties; however, questions remain regarding optimal crosslinking chemistries, biocompatibility, biodegradation, long-term stability, and potential for biotextile assemble at scale, limiting their clinical usefulness. Here, we assessed over 50 different crosslinking chemistries on microfluidic wet-extruded collagen microfibers made with clinically relevant collagen to optimize collagen fibers as a biotextile yarn for suture or other medical device manufacture. The endogenous collagen crosslinker, glyoxal, provides extraordinary fiber ultimate tensile strength near 300MPa, and Young's modulus of over 3GPa while retaining 50% of the initial load-bearing capacity through 6 months as hydrated. Glyoxal crosslinked collagen fibers further proved cytocompatible and biocompatible per ISO 10993-based testing, and further elicits a predominantly M2 macrophage response. Remarkably these strong collagen fibers are amenable to industrial braiding to form strong collagen fiber sutures. Collagen microfluidic wet extrusion with glyoxal crosslinking thus progress bioengineered, strong, and stable collagen microfibers significantly towards clinical use for potentially promoting efficient healing compared to existing suture materials. STATEMENT OF SIGNIFICANCE: Towards improving clinical outcomes for over 1 million ligament and tendon surgeries performed annually, we report an advanced microfluidic extrusion process for type I collagen microfiber manufacturing for biological suture and other biotextile manufacturing. This manuscript reports the most extensive wet-extruded collagen fiber crosslinking compendium published to date, providing a tremendous recourse to the field. Collagen fibers made with clinical-grade collagen and crosslinked with glyoxal, exhibit tensile strength and stability that surpasses all prior reports. This is the first report demonstrating that glyoxal, a native tissue crosslinker, has the extraordinary ability to produce strong, cytocompatible, and biocompatible collagen microfibers. These collagen microfibers are ideal for advanced research and clinical use as surgical suture or other tissue-engineered medical products for sports medicine, orthopedics, and other surgical indications.


Assuntos
Colágeno , Microfluídica , Materiais Biocompatíveis , Reagentes de Ligações Cruzadas , Teste de Materiais , Suturas , Resistência à Tração , Engenharia Tecidual
4.
Biomed Mater ; 16(2): 025025, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32927444

RESUMO

Approximately 800, 000 surgical repairs are performed annually in the U.S. for debilitating injuries to ligaments and tendons of the foot, ankle, knee, wrist, elbow and shoulder, presenting a significant healthcare burden. To overcome current treatment shortcomings and advance the treatment of tendon and ligament injuries, we have developed a novel electrospun Tissue ENgineered Device (TEND), comprised of type I collagen and poly(D,L-lactide) (PDLLA) solubilized in a benign solvent, dimethyl sulfoxide (DMSO). TEND fiber alignment, diameter and porosity were engineered to enhance cell infiltration leading to promote tissue integration and functional remodeling while providing biomechanical stability. TEND rapidly adsorbs blood and platelet-rich-plasma (PRP), and gradually releases growth factors over two weeks. TEND further supported cellular alignment and upregulation of tenogenic genes from clinically relevant human stem cells within three days of culture. TEND implanted in a rabbit Achilles tendon injury model showed new in situ tissue generation, maturation, and remodeling of dense, regularly oriented connective tissue in vivo. In all, TEND's organized microfibers, biological fluid and cell compatibility, strength and biocompatiblility make significant progress towards clinically translating electrospun collagen-based medical devices for improving the clinical outcomes of tendon injuries.


Assuntos
Tendão do Calcâneo/cirurgia , Colágeno Tipo I/metabolismo , Células-Tronco/citologia , Traumatismos dos Tendões/cirurgia , Tendões/citologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Tendão do Calcâneo/patologia , Adsorção , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Tecido Conjuntivo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Plasma Rico em Plaquetas/metabolismo , Poliésteres/química , Porosidade , Coelhos , Ratos , Regeneração , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Termogravimetria , Regulação para Cima
5.
Biomed Mater ; 8(5): 055009, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24057893

RESUMO

It is critically important to study head and neck squamous cell carcinoma tumorigenic mechanisms in order to gain a better understanding of tumor development, progression, and treatment. Unfortunately, a representative three-dimensional (3D) model for these evaluations has yet to be developed. The purpose of this study was to replicate tumor extracellular matrix (ECM) morphology utilizing electrospinning technology. First, the tumor ECM was evaluated by decellularizing tumor samples and analyzing the fibrous structure of the ECM by scanning electron microscopy. Cryogenic electrospun silk scaffolds were then fabricated to mimic the tumor ECM, and were found to be similar in fiber orientation and fiber dimensions to the native tumor ECM. Tumor cells were cultured on these ECM mimicking scaffolds and compared to an in vivo model of the same derivative human tumor in terms of proliferation and differentiation. The tumor cells in the 3D model show similar phenotypes to those found in vivo, contrasting to the same cells grown in two-dimensional (2D) culture. The sensitivity of the tumor cells to paclitaxel was compared between 2D culture and 3D culture. The results indicate that increased drug concentrations, orders of magnitude higher than the IC90 for 2D culture, had minimal effects on HN12 cell viability in the 3D model. In conclusion, an in vitro tumor model has been developed that will allow for a better understanding of tumor biology and aid chemotherapeutic drug development and accurate evaluation of drug efficacy.


Assuntos
Carcinoma de Células Escamosas/patologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Matriz Extracelular/química , Neoplasias de Cabeça e Pescoço/patologia , Engenharia Tecidual/métodos , Animais , Antineoplásicos , Bombyx , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Meios de Cultura/química , Humanos , Microscopia de Fluorescência , Paclitaxel/química , Fenótipo , Seda , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa