Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Neurobiol Dis ; 66: 1-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24561067

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.


Assuntos
Astrócitos/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endossomos/efeitos dos fármacos , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Estresse Oxidativo , Transporte Proteico/efeitos dos fármacos , Ratos , Canais de Cátion TRPV/metabolismo , Transferrina/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
2.
Hum Mol Genet ; 21(10): 2166-80, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22328087

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare leukodystrophy characterized by macrocephaly, subcortical fluid cysts and myelin vacuolation, has been linked to mutations in the MLC1 gene. This gene encodes a membrane protein that is highly expressed in astrocytes. Based on MLC pathological features, it was proposed that astrocyte-mediated defects in ion and fluid homeostasis could account for the alterations observed in MLC-affected brains. However, the role of MLC1 and the effects of pathological mutations on astrocyte osmoregulatory functions have still to be demonstrated. Using human astrocytoma cells stably overexpressing wild-type MLC1 or three known MLC-associated pathological mutations, we investigated MLC1 involvement in astrocyte reaction to osmotic changes using biochemical, dynamic video imaging and immunofluorescence techniques. We have found that MLC1 overexpressed in astrocytoma cells is mainly localized in the plasma membrane, is part of the Na,K-ATPase-associated molecular complex that includes the potassium channel Kir4.1, syntrophin and aquaporin-4 and functionally interacts with the calcium permeable channel TRPV4 (transient receptor potential vanilloid-4 cation channel) which mediates swelling-induced cytosolic calcium increase and volume recovery in response to hyposmosis. Pathological MLC mutations cause changes in MLC1 expression and intracellular localization as well as in the astrocyte response to osmotic changes by altering MLC1 molecular interactions with the Na,K-ATPase molecular complex and abolishing the increase in calcium influx induced by hyposmosis and treatment with the TRPV4 agonist 4αPDD. These data demonstrate, for the first time, that MLC1 plays a role in astrocyte osmo-homeostasis and that defects in intracellular calcium dynamics may contribute to MLC pathogenesis.


Assuntos
Astrócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Cátions Bivalentes , Cistos/genética , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Mutação , Osmose , Transfecção
3.
Hum Mol Genet ; 20(1): 90-103, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20926452

RESUMO

Megalencephalic leucoencephalopathy with subcortical cysts (MLC) is a rare congenital leucodystrophy caused by mutations in MLC1, a membrane protein of unknown function. MLC1 expression in astrocyte end-feet contacting blood vessels and meninges, along with brain swelling, fluid cysts and myelin vacuolation observed in MLC patients, suggests a possible role for MLC1 in the regulation of fluid and ion homeostasis and cellular volume changes. To identify MLC1 direct interactors and dissect the molecular pathways in which MLC1 is involved, we used NH2-MLC1 domain as a bait to screen a human brain library in a yeast two-hybrid assay. We identified the ß1 subunit of the Na,K-ATPase pump as one of the interacting clones and confirmed it by pull-downs, co-fractionation assays and immunofluorescence stainings in human and rat astrocytes in vitro and in brain tissue. By performing ouabain-affinity chromatography on astrocyte and brain extracts, we isolated MLC1 and the whole Na,K-ATPase enzyme in a multiprotein complex that included Kir4.1, syntrophin and dystrobrevin. Because Na,K-ATPase is involved in intracellular osmotic control and volume regulation, we investigated the effect of hypo-osmotic stress on MLC1/Na,K-ATPase relationship in astrocytes. We found that hypo-osmotic conditions increased MLC1 membrane expression and favoured MLC1/Na,K-ATPase-ß1 association. Moreover, hypo-osmosis induced astrocyte swelling and the reversible formation of endosome-derived vacuoles, where the two proteins co-localized. These data suggest that through its interaction with Na,K-ATPase, MLC1 is involved in the control of intracellular osmotic conditions and volume regulation in astrocytes, opening new perspectives for understanding the pathological mechanisms of MLC disease.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células Cultivadas , Cistos/genética , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Proteínas de Membrana/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Complexos Multiproteicos/metabolismo , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/genética
4.
Exp Eye Res ; 116: 1-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23954924

RESUMO

Dysbindin, the product of the DTNBP1 gene, was identified by yeast two hybrid assay as a binding partner of dystrobrevin, a cytosolic component of the dystrophin protein complex. Although its functional role has not yet been completely elucidated, the finding that dysbindin assembles into the biogenesis of lysosome related organelles complex 1 (BLOC-1) suggests that it participates in intracellular trafficking and biogenesis of organelles and vesicles. Dysbindin is ubiquitous and in brain is expressed primarily in neurons. Variations at the dysbindin gene have been associated with increased risk for schizophrenia. As anomalies in retinal function have been reported in patients suffering from neuropsychiatric disorders, we investigated the expression of dysbindin in the retina. Our results show that differentially regulated dysbindin isoforms are expressed in rat retina during postnatal maturation. Interestingly, we found that dysbindin is mainly localized in Müller cells. The identification of dysbindin in glial cells may open new perspectives for a better understanding of the functional involvement of this protein in visual alterations associated to neuropsychiatric disorders.


Assuntos
Proteínas de Transporte/genética , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , RNA/genética , Retina/crescimento & desenvolvimento , Animais , Western Blotting , Proteínas de Transporte/biossíntese , Disbindina , Proteínas Associadas à Distrofina , Eletroforese , Células Ependimogliais/citologia , Masculino , Proteínas do Tecido Nervoso/biossíntese , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Retina/citologia , Retina/metabolismo
5.
Exp Cell Res ; 318(19): 2460-9, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22814252

RESUMO

Dystroglycan (DG) is an extracellular receptor composed of two subunits, α-DG and ß-DG, connected through the α-DG C-terminal domain and the ß-DG N-terminal domain. We report an alanine scanning of all DG cysteine residues performed on DG-GFP constructs overexpressed in 293-Ebna cells, demonstrating that Cys-669 and Cys-713, both located within the ß-DG N-terminal domain, are key residues for the DG precursor cleavage and trafficking, but not for the interaction between the two DG subunits. In addition, we have used immunprecipitation and confocal microscopy showing that ERp57, a member of the disulfide isomerase family involved in glycoprotein folding, is associated and colocalizes immunohistochemically with ß-DG in the ER and at the plasma membrane of 293-Ebna cells. The ß-DG-ERp57 complex also included α-DG. DG mutants, unable to undergo the precursor cleavage, were still associated to ERp57. ß-DG and ERp57 were also co-immunoprecipitated in rat heart and kidney tissues. In vitro, a mutant ERp57, mimicking the reduced form of the wild-type protein, interacts directly with the recombinant N-terminal domain of both α-DG and ß-DG with apparent dissociation constant values in the micromolar range. ERp57 is likely to be involved in the DG processing/maturation pathway, but its association to the mature DG complex might also suggest some further functional role that needs to be investigated.


Assuntos
Distroglicanas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Distroglicanas/genética , Glicosilação , Células HEK293 , Coração/fisiologia , Humanos , Rim/metabolismo , Rim/fisiologia , Mutação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Subunidades Proteicas , Transporte Proteico/fisiologia , Ratos
6.
J Biol Chem ; 285(32): 24740-50, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20530487

RESUMO

alpha and beta dystrobrevins are cytoplasmic components of the dystrophin-associated protein complex that are thought to play a role as scaffold proteins in signal transduction and intracellular transport. In the search of new insights into the functions of beta-dystrobrevin, the isoform restricted to non-muscle tissues, we performed a two-hybrid screen of a mouse cDNA library to look for interacting proteins. Among the positive clones, one encodes iBRAF/HMG20a, a high mobility group (HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-responsive genes, playing a key role in the initiation of neuronal differentiation. We characterized the beta-dystrobrevin-iBRAF interaction by in vitro and in vivo association assays, localized the binding region of one protein to the other, and assessed the kinetics of the interaction as one of high affinity. We also found that beta-dystrobrevin directly binds to BRAF35/HMG20b, a close homologue of iBRAF and a member of a co-repressor complex required for the repression of neural specific genes in neuronal progenitors. In vitro assays indicated that beta-dystrobrevin binds to RE-1 and represses the promoter activity of synapsin I, a REST-responsive gene that is a marker for neuronal differentiation. Altogether, our data demonstrate a direct interaction of beta-dystrobrevin with the HMG20 proteins iBRAF and BRAF35 and suggest that beta-dystrobrevin may be involved in regulating chromatin dynamics, possibly playing a role in neuronal differentiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Associadas à Distrofina/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Neurônios/citologia , Animais , Células COS , Proteínas de Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromatina/química , Humanos , Cinética , Camundongos , Distrofias Musculares/metabolismo , Ratos , Ressonância de Plasmônio de Superfície
7.
BMC Cancer ; 11: 17, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21241471

RESUMO

BACKGROUND: "High risk" human papillomavirus strains are the causative agents of the vast majority of carcinomas of the uterine cervix. In these tumors, the physical integration of the HPV genome is a frequent, though not invariable occurrence, but the constitutive expression of the E6 and E7 viral genes is always observed, suggesting key roles for the E6 and E7 oncoproteins in the process of malignant transformation. The "intracellular antibody" technology using recombinant antibodies in single-chain format offers the possibility of targeting a protein in its intracellular environment even at the level of definite domains thus representing a valuable strategy to "knock out" the function of specific proteins. METHODS: In this study, we investigate the in vitro activity of two single-chain antibody fragments directed against the "high-risk" HPV 16 E7 oncoprotein, scFv 43M2 and scFv 51. These scFvs were expressed by retroviral system in different cell compartments of the HPV16-positive SiHa cells, and cell proliferation was analyzed by Colony Formation Assay and EZ4U assay. The binding of these scFvs to E7, and their possible interference with the interaction between E7 and its main target, the tumor suppressor pRb protein, were then investigated by immunoassays, PepSet™ technology and Surface Plasmon Resonance. RESULTS: The expression of the two scFvs in the nucleus and the endoplasmic reticulum of SiHa cells resulted in the selective growth inhibition of these cells. Analysis of binding showed that both scFvs bind E7 via distinct but overlapping epitopes not corresponding to the pRb binding site. Nevertheless, the binding of scFv 43M2 to E7 was inhibited by pRb in a non-competitive manner. CONCLUSIONS: Based on the overall results, the observed inhibition of HPV-positive SiHa cells proliferation could be ascribed to an interaction between scFv and E7, involving non-pRb targets. The study paves the way for the employment of specific scFvs in immunotherapeutic approaches against the HPV-associated lesions.


Assuntos
Proliferação de Células , Papillomavirus Humano 16/imunologia , Proteínas E7 de Papillomavirus/imunologia , Anticorpos de Cadeia Única/imunologia , Ligação Competitiva , Linhagem Celular Tumoral , Mapeamento de Epitopos , Feminino , Imunofluorescência , Células HEK293 , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/fisiologia , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Ligação Proteica , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Ressonância de Plasmônio de Superfície , Transfecção , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
8.
Hum Mol Genet ; 17(13): 2018-29, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18372317

RESUMO

Missense PTPN11 mutations cause Noonan and LEOPARD syndromes (NS and LS), two developmental disorders with pleiomorphic phenotypes. PTPN11 encodes SHP2, an SH2 domain-containing protein tyrosine phosphatase functioning as a signal transducer. Generally, different substitutions of a particular amino acid residue are observed in these diseases, indicating that the crucial factor is the residue being replaced. For a few codons, only one substitution is observed, suggesting the possibility of specific roles for the residue introduced. We analyzed the biochemical behavior and ligand-binding properties of all possible substitutions arising from single-base changes affecting codons 42, 139, 279, 282 and 468 to investigate the mechanisms underlying the invariant occurrence of the T42A, E139D and I282V substitutions in NS and the Y279C and T468M changes in LS. Our data demonstrate that the isoleucine-to-valine change at codon 282 is the only substitution at that position perturbing the stability of SHP2's closed conformation without impairing catalysis, while the threonine-to-alanine change at codon 42, but not other substitutions of that residue, promotes increased phosphopeptide-binding affinity. The recognition specificity of the C-SH2 domain bearing the E139D substitution differed substantially from its wild-type counterpart acquiring binding properties similar to those observed for the N-SH2 domain, revealing a novel mechanism of SHP2's functional dysregulation. Finally, while functional selection does not seem to occur for the substitutions at codons 279 and 468, we point to deamination of the methylated cytosine at nucleotide 1403 as the driving factor leading to the high prevalence of the T468M change in LS.


Assuntos
Substituição de Aminoácidos , Síndrome LEOPARD/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Simulação por Computador , Análise Mutacional de DNA , Células HeLa , Humanos , Síndrome LEOPARD/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Síndrome de Noonan/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
9.
Neurobiol Dis ; 35(2): 278-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19481149

RESUMO

The early effects of the diabetic milieu on retinal tissue and their relation to the Renin-Angiotensin system (RAS) activation are poorly known. Here we investigated RAS signaling in retinas explanted from adult rats exposed for 48 h to high glucose (HG), with or without the Angiotensin Converting Enzyme inhibitor enalaprilat, which blocks RAS. HG was observed to i) initiate a phosphotyrosine-dependent signaling cascade; ii) up-regulate Angiotensin(1) Receptor (AT(1)R); iii) activate src tyrosine kinase and increase phosphorylation of Pyk2, PLCgamma1 and ERK1/2; and iv) activate Akt and the transcription factor CREB. In the presence of enalaprilat, tyrosine phosphorylation signal and AT(1)R upregulation decreased and activation of PLCgamma1 and CREB reverted, showing their relation to RAS signaling. In line with Akt activation, no apoptosis or synapse degeneration was found. Müller glia was activated, but in a RAS-independent manner. Our results suggest that, in early phases of HG exposure, a pro-survival cell program may be induced in the retina.


Assuntos
Glucose/metabolismo , Sistema Renina-Angiotensina/fisiologia , Retina/fisiologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Enalaprilato/farmacologia , Quinase 2 de Adesão Focal/metabolismo , Técnicas In Vitro , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfolipase C gama/metabolismo , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Retina/efeitos dos fármacos , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/fisiologia , Fatores de Tempo , Quinases da Família src/metabolismo
10.
Matrix Biol ; 27(4): 360-70, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18249103

RESUMO

Keratoepithelin (KE) is an extracellular matrix protein that binds collagens, fibronectin, decorin, biglycan and integrins, interconnecting extracellular matrix components with resident cells in several tissues. KE has a molecular mass of 68 kDa and harbours four FAS1 domains named after those identified in the insect cell adhesion molecule fasciclin I. In humans, KE is preferentially expressed by the corneal epithelial layer and liberated towards the corneal stroma but it was also detected in the lung and in the bladder smooth muscle. No detailed information is available on the distribution of this protein in other human tissues. In this work, we have raised a polyclonal antibody against the recombinantly expressed human fourth FAS1 domain which is able to specifically detect KE in human skeletal muscle tissue extracts. Immunofluorescence experiments indicate that KE is localized around the perimysium and endomysium of each skeletal muscle fiber. The same kind of analysis shows that in muscle sections from patients affected by different forms of muscular dystrophy KE is upregulated and widely distributed in fibrotic tissues. The muscle specific expression of KE was also demonstrated by RT-PCR. In human skeletal muscle, KE may help to build up a bridge between collagen VI and yet unidentified muscle receptor(s), adding to the complexity of the adhesive molecular network established between muscle fibers and the surrounding basement membrane.


Assuntos
Proteínas da Matriz Extracelular/imunologia , Proteínas da Matriz Extracelular/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Sequência de Aminoácidos , Animais , Córnea/metabolismo , Reações Cruzadas , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Peso Molecular , RNA Mensageiro/genética , Ratos , Alinhamento de Sequência , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/genética
11.
J Mol Biol ; 371(5): 1174-87, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17610895

RESUMO

The dystrophin-related and -associated protein dystrobrevin is a component of the dystrophin-associated protein complex, which directly links the cytoskeleton to the extracellular matrix. It is now thought that this complex also serves as a dynamic scaffold for signaling proteins, and dystrobrevin may play a role in this context. Since dystrobrevin involvement in signaling pathways seems to be dependent on its interaction with other proteins, we sought new insights and performed a two-hybrid screen of a mouse brain cDNA library using beta-dystrobrevin, the isoform expressed in non-muscle tissues, as bait. Among the positive clones characterized after the screen, one encodes the regulatory subunit RIalpha of the cAMP-dependent protein kinase A (PKA). We confirmed the interaction by in vitro and in vivo association assays, and mapped the binding site of beta-dystrobrevin on RIalpha to the amino-terminal region encompassing the dimerization/docking domain of PKA regulatory subunit. We also found that the domain of interaction for RIalpha is contained in the amino-terminal region of beta-dystrobrevin. We obtained evidence that beta-dystrobrevin also interacts directly with RIIbeta, and that not only beta-dystrobrevin but also alpha-dystrobrevin interacts with PKA regulatory subunits. We show that both alpha and beta-dystrobrevin are specific phosphorylation substrates for PKA and that protein phosphatase 2A (PP2A) is associated with dystrobrevins. Our results suggest a new role for dystrobrevin as a scaffold protein that may play a role in different cellular processes involving PKA signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Associadas à Distrofina/química , Proteínas Associadas à Distrofina/fisiologia , Animais , Sítios de Ligação , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Matriz Extracelular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
12.
Cancer Biol Ther ; 5(4): 441-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16575202

RESUMO

Dystroglycan (DG) is an integral membrane receptor of extracellular matrix proteins, composed of two subunits alpha and beta derived from a common precursor. In brain DG is expressed in neurons, glia limitans, astrocytic endfeet around vessels and endothelial cells. We investigate whether DG may play a role in brain tumors. Western blot and immunofluorescence analysis showed that, while beta-DG subunit was present, the highly glycosylated alpha-DG subunit was strongly reduced in surgically derived human glioblastoma biopsies, in low passage patient-derived cultures and in glioma cell lines, U87MG and A172MG, but not in all glioma cell lines tested. Immunohistochemistry of tumor frozen sections revealed that the loss of alpha-DG was confined in the tumor area but not around blood vessels. Overexpression of DG decreased the growth rate of the glioma cell lines lacking the highly glycosylated alpha-DG subunit and the colony-forming efficiency. Clonogenic assay in presence of temozolomide showed an additive effect between DG overexpression and drug treatment. Our data suggest that DG may be involved in the progression of primary brain tumors.


Assuntos
Distroglicanas/fisiologia , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Animais , Western Blotting , Encéfalo/embriologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Distroglicanas/química , Humanos , Imuno-Histoquímica , Microscopia de Fluorescência , Invasividade Neoplásica , Ratos , Transfecção
13.
FEBS J ; 273(21): 4929-43, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17018058

RESUMO

The dystroglycan adhesion complex consists of two noncovalently interacting proteins: alpha-dystroglycan, a peripheral extracellular subunit that is extensively glycosylated, and the transmembrane beta-dystroglycan, whose cytosolic tail interacts with dystrophin, thus linking the F-actin cytoskeleton to the extracellular matrix. Dystroglycan is thought to play a crucial role in the stability of the plasmalemma, and forms strong contacts between the extracellular matrix and the cytoskeleton in a wide variety of tissues. Abnormal membrane targeting of dystroglycan subunits and/or their aberrant post-translational modification are often associated with several pathologic conditions, ranging from neuromuscular disorders to carcinomas. A putative functional hotspot of dystroglycan is represented by its intersubunit surface, which is contributed by two amino acid stretches: approximately 30 amino acids of beta-dystroglycan (691-719), and approximately 15 amino acids of alpha-dystroglycan (550-565). Exploiting alanine scanning, we have produced a panel of site-directed mutants of our two consolidated recombinant peptides beta-dystroglycan (654-750), corresponding to the ectodomain of beta-dystroglycan, and alpha-dystroglycan (485-630), spanning the C-terminal domain of alpha-dystroglycan. By solid-phase binding assays and surface plasmon resonance, we have determined the binding affinities of mutated peptides in comparison to those of wild-type alpha-dystroglycan and beta-dystroglycan, and shown the crucial role of two beta-dystroglycan phenylalanines, namely Phe692 and Phe718, for the alpha-beta interaction. Substitution of the alpha-dystroglycan residues Trp551, Phe554 and Asn555 by Ala does not affect the interaction between dystroglycan subunits in vitro. As a preliminary analysis of the possible effects of the aforementioned mutations in vivo, detection through immunofluorescence and western blot of the two dystroglycan subunits was pursued in dystroglycan-transfected 293-Ebna cells.


Assuntos
Distroglicanas/química , Linhagem Celular , Distroglicanas/genética , Distroglicanas/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fenilalanina/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Mol Biol ; 354(4): 872-82, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16288919

RESUMO

Dystrobrevins are a family of widely expressed dystrophin-associated proteins that comprises alpha and beta isoforms and displays significant sequence homology with several protein-binding domains of the dystrophin C-terminal region. The complex distribution of the multiple dystrobrevin isoforms suggests that the variability of their composition may be important in mediating their function. We have recently identified kinesin as a novel dystrobrevin-interacting protein and localized the dystrobrevin-binding site on the cargo-binding domain of neuronal kinesin heavy chain (Kif5A). In the present study, we assessed the kinetics of the dystrobrevin-Kif5A interaction by quantitative pull-down assay and surface plasmon resonance (SPR) analysis and found that beta-dystrobrevin binds to kinesin with high affinity (K(D) approximately 40 nM). Comparison of the sensorgrams obtained with alpha and beta-dystrobrevin at the same concentration of analyte showed a lower affinity of alpha compared to that of beta-dystrobrevin, despite their functional domain homology and about 70% sequence identity. Analysis of the contribution of single dystrobrevin domains to the interaction revealed that the deletion of either the ZZ domain or the coiled-coil region decreased the kinetics of the interaction, suggesting that the tertiary structure of dystrobrevin may play a role in regulating the interaction of dystrobrevin with kinesin. In order to understand if structural changes induced by post-translational modifications could affect dystrobrevin affinity for kinesin, we phosphorylated beta-dystrobrevin in vitro and found that it showed reduced binding capacity towards kinesin. The interaction between the adaptor/scaffolding protein dystrobrevin and the motor protein kinesin may play a role in the transport and targeting of components of the dystrophin-associated protein complex to specific sites in the cell, with the differences in the binding properties of dystrobrevin isoforms reflecting their functional diversity within the same cell type. Phosphorylation events could have a regulatory role in this context.


Assuntos
Proteínas Associadas à Distrofina/química , Cinesinas/química , Animais , Proteínas Associadas à Distrofina/metabolismo , Cinesinas/metabolismo , Cinética , Camundongos , Fosforilação , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ressonância de Plasmônio de Superfície
15.
J Neuropathol Exp Neurol ; 64(11): 1007-17, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16254495

RESUMO

We have previously shown that intraganglionic synapse disassembly consequent on superior cervical ganglion (SCG) neuron axotomy was preceded by the loss of the dystroglycan beta subunit (beta-DG) localized at the postsynaptic specializations. Because DG, a transmembrane molecular complex bridging the extracellular matrix to the cortical cytoskeleton, could be a physiological target of metalloproteinases (MMPs) 2 and 9, we investigated their possible involvement in the injury-induced intraganglionic synapse disassembly. In rat SCG, only MMP-2 was present and localized in both neurons and nonneuronal cells. After ganglion neuron axotomy, both MMP-2 activity and protein level increased, whereas the level of its mRNA was unchanged, suggesting prominent MMP-2 posttranslational regulation. mRNA and protein levels of the enzymes involved in the MMP-2 activation pathway, the membrane-type 1-MMP (MT1-MMP), and the tissue inhibitor of metalloproteinase-2 (TIMP-2) also increased after injury with a time course that correlated with that of MMP-2 activation. In addition, postganglionic nerve crush induced an increase in the beta-DG 30-kDa fragment produced by the MMP-dependent degradation of DG. These data suggest that MMP-2 activated during SCG neuron reaction to axotomy may degrade postsynaptic DG, contributing to the disruption of the molecular bridge between pre- and postsynaptic elements and disassembly of the intraganglionic synapses.


Assuntos
Regulação da Expressão Gênica/fisiologia , Metaloproteinase 2 da Matriz/metabolismo , Neurônios/enzimologia , Gânglio Cervical Superior/citologia , Simpatectomia , Animais , Western Blotting , Imuno-Histoquímica/métodos , Masculino , Microscopia Eletrônica/métodos , Compressão Nervosa/métodos , Neurônios/ultraestrutura , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Fatores de Tempo
16.
Ann Ist Super Sanita ; 41(4): 437-41, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16569911

RESUMO

The Surface Plasmon Resonance (SPR) technique makes it possible to measure biomolecular interactions in real-time with a high degree of sensitivity and without the need of label. The information obtained is both qualitative and quantitative and it is possible to obtain the kinetic parameters of the interaction. This new technology has been used to study a diverse set of interaction partners of biological interest, such as protein-protein, protein-lipids, protein- nucleic acids or protein and low molecular weight molecules such as drugs, substrates and cofactors. In addition to basic biomedical research, the SPR biosensor has recently been used in food analysis, proteomics, immunogenicity and drug discovery.


Assuntos
Substâncias Macromoleculares/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Animais , Reações Antígeno-Anticorpo , Técnicas Biossensoriais , Sistemas Computacionais , Distroglicanas/metabolismo , Desenho de Equipamento , Proteína Adaptadora GRB2/metabolismo , Humanos , Cinética , Mutagênese Sítio-Dirigida , Mapeamento de Interação de Proteínas , Coelhos , Refratometria , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/instrumentação
17.
Front Cell Neurosci ; 9: 66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25883547

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLCs) disease is a rare inherited, autosomal recessive form of childhood-onset spongiform leukodystrophy characterized by macrocephaly, deterioration of motor functions, epileptic seizures and mental decline. Brain edema, subcortical fluid cysts, myelin and astrocyte vacuolation are the histopathological hallmarks of MLC. Mutations in either the MLC1 gene (>75% of patients) or the GlialCAM gene (<20% of patients) are responsible for the disease. Recently, the GlialCAM adhesion protein was found essential for the membrane expression and function of the chloride channel ClC-2 indicating MLC disease caused by mutation in GlialCAM as the first channelopathy among leukodystrophies. On the contrary, the function of MLC1 protein, which binds GlialCAM, its functional relationship with ClC-2 and the molecular mechanisms underlying MLC1 mutation-induced functional defects are not fully understood yet. The human MLC1 gene encodes a 377-amino acid membrane protein with eight predicted transmembrane domains which shows very low homology with voltage-dependent potassium (K(+)) channel subunits. The high expression of MLC1 in brain astrocytes contacting blood vessels and meninges and brain alterations observed in MLC patients have led to hypothesize a role for MLC1 in the regulation of ion and water homeostasis. Recent studies have shown that MLC1 establishes structural and/or functional interactions with several ion/water channels and transporters and ion channel accessory proteins, and that these interactions are affected by MLC1 mutations causing MLC. Here, we review data on MLC1 functional properties obtained in in vitro and in vivo models and discuss evidence linking the effects of MLC1 mutations to brain channelopathies.

18.
Neuromuscul Disord ; 12(1): 36-48, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11731283

RESUMO

The dystrophin gene that is defective in Duchenne muscular dystrophy shows a complex transcriptional control based on several promoters driving independent cell-type-specific expression of different isoforms. Dystrophin isoforms together with dystroglycan, a transmembrane protein which in turn binds to extracellular matrix, are the core of a complex of proteins, the dystrophin-associated protein (DAP) complex, which also comprises cytoplasmic elements like dystrobrevin. Whereas the molecular organization of DAP complex in muscle is well documented, the composition of a similar complex in the nervous system remains largely unknown. We followed by competitive PCR the expression of DAP complex components during retinoic acid (RA)-induced neuronal differentiation of P19 cells. Transcripts for the full-length dystrophin, Dp427, and the short isoform, Dp71, as well as for alpha-dystrobrevin 2 increased in parallel with days in culture after RA stimulation, while dystroglycan, alpha-dystrobrevin 1 and 3, and beta-dystrobrevin were constitutively expressed. The upregulation of some of the components of the dystrophin complex during neuronal maturation suggests functional flexibility of the complex in the nervous system, where specific associations between different isoforms of DAP complex components could possibly organize distinct DAP complex-like complexes.


Assuntos
Proteínas Associadas à Distrofina , Distrofina/genética , Neurônios/citologia , Neurônios/fisiologia , Animais , Antineoplásicos/farmacologia , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/genética , Distroglicanas , Distrofina/análise , Células-Tronco de Carcinoma Embrionário , Expressão Gênica/fisiologia , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Células-Tronco Neoplásicas , Neurônios/química , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/farmacologia , Células Tumorais Cultivadas
19.
Transl Neurosci ; 4(2)2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24340223

RESUMO

Astrocytes are the predominant glial cell population in the central nervous system (CNS). Once considered only passive scaffolding elements, astrocytes are now recognised as cells playing essential roles in CNS development and function. They control extracellular water and ion homeostasis, provide substrates for energy metabolism, and regulate neurogenesis, myelination and synaptic transmission. Due to these multiple activities astrocytes have been implicated in almost all brain pathologies, contributing to various aspects of disease initiation, progression and resolution. Evidence is emerging that astrocyte dysfunction can be the direct cause of neurodegeneration, as shown in Alexander's disease where myelin degeneration is caused by mutations in the gene encoding the astrocyte-specific cytoskeleton protein glial fibrillary acidic protein. Recent studies point to a primary role for astrocytes in the pathogenesis of other genetic leukodystrophies such as megalencephalic leukoencephalopathy with subcortical cysts and vanishing white matter disease. The aim of this review is to summarize current knowledge of the pathophysiological role of astrocytes focusing on their contribution to the development of the above mentioned leukodystrophies and on new perspectives for the treatment of neurological disorders.

20.
FEBS J ; 279(22): 4131-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22978324

RESUMO

Dystrobrevin family members (α and ß) are cytoplasmic components of the dystrophin-associated glycoprotein complex, a multimeric protein complex first isolated from skeletal muscle, which links the extracellular matrix to the actin cytoskeleton. Dystrobrevin shares high homology with the cysteine-rich and C-terminal domains of dystrophin and a common domain organization. The ß-dystrobrevin isoform is restricted to nonmuscle tissues, serves as a scaffold for signaling complexes, and may participate in intracellular transport through its interaction with kinesin heavy chain. We have previously characterized the molecular determinants affecting the ß-dystrobrevin-kinesin heavy chain interaction, among which is cAMP-dependent protein kinase [protein kinase A (PKA)] phosphorylation of ß-dystrobrevin. In this study, we have identified ß-dystrobrevin residues phosphorylated in vitro by PKA with pull-down assays, surface plasmon resonance measurements, and MS analysis. Among the identified phosphorylated residues, we demonstrated, by site-directed mutagenesis, that Thr11 is the regulatory site for the ß-dystrobrevin-kinesin interaction. As dystrobrevin may function as a signaling scaffold for kinases/phosphatases, we also investigated whether ß-dystrobrevin is phosphorylated in vitro by kinases other than PKA. Thr11 was phosphorylated by protein kinase C, suggesting that this represents a key residue modified by the activation of different signaling pathways.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Cinesinas/metabolismo , Neuropeptídeos/metabolismo , Proteína Quinase C/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Western Blotting , Proteínas Associadas à Distrofina/genética , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Neuropeptídeos/genética , Fosforilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa