RESUMO
BACKGROUND: About 15%-20% of breast cancer (BC) cases is classified as Human Epidermal growth factor Receptor type 2 (HER2) positive. The Neoadjuvant chemotherapy (NAC) was initially introduced for locally advanced and inflammatory BC patients to allow a less extensive surgical resection, whereas now it represents the current standard for early-stage and operable BC. However, only 20%-40% of patients achieve pathologic complete response (pCR). According to the results of practice-changing clinical trials, the addition of trastuzumab to NAC brings improvements to pCR, and recently, the use of pertuzumab plus trastuzumab has registered further statistically significant and clinically meaningful improvements in terms of pCR. The goal of our work is to propose a machine learning model to predict the pCR to NAC in HER2-positive patients based on a subset of clinical features. METHOD: First, we evaluated the significant association of clinical features with pCR on the retrospectively collected data referred to 67 patients afferent to Istituto Tumori "Giovanni Paolo II." Then, we performed a feature selection procedure to identify a subset of features to be used for training a machine learning-based classification algorithm. As a result, pCR to NAC was associated with ER status, Pgr status, and HER2 score. RESULTS: The machine learning model trained on a subgroup of essential features reached an AUC of 73.27% (72.44%-73.66%) and an accuracy of 71.67% (71.64%-73.13%). According to our results, the clinical features alone are not enough to define a support system useful for clinical pathway. CONCLUSION: Our results seem worthy of further investigation in large validation studies and this work could be the basis of future study that will also involve radiomics analysis of biomedical images.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Prognóstico , Terapia Neoadjuvante/métodos , Estudos Retrospectivos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Aprendizado de Máquina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
For endocrine-positive Her2 negative breast cancer patients at an early stage, the benefit of adding chemotherapy to adjuvant endocrine therapy is not still confirmed. Several genomic tests are available on the market but are very expensive. Therefore, there is the urgent need to explore novel reliable and less expensive prognostic tools in this setting. In this paper, we shown a machine learning survival model to estimate Invasive Disease-Free Events trained on clinical and histological data commonly collected in clinical practice. We collected clinical and cytohistological outcomes of 145 patients referred to Istituto Tumori "Giovanni Paolo II". Three machine learning survival models are compared with the Cox proportional hazards regression according to time-dependent performance metrics evaluated in cross-validation. The c-index at 10 years obtained by random survival forest, gradient boosting, and component-wise gradient boosting is stabled with or without feature selection at approximately 0.68 in average respect to 0.57 obtained to Cox model. Moreover, machine learning survival models have accurately discriminated low- and high-risk patients, and so a large group which can be spared additional chemotherapy to hormone therapy. The preliminary results obtained by including only clinical determinants are encouraging. The integrated use of data already collected in clinical practice for routine diagnostic investigations, if properly analyzed, can reduce time and costs of the genomic tests.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Terapia Combinada , Hormônios , Prognóstico , Modelos de Riscos Proporcionais , Receptor ErbB-2/genética , Aprendizado de MáquinaRESUMO
PURPOSE: To evaluate radiomics features in order to: differentiate malignant versus benign lesions; predict low versus moderate and high grading; identify positive or negative hormone receptors; and discriminate positive versus negative human epidermal growth factor receptor 2 related to breast cancer. METHODS: A total of 182 patients with known breast lesions and that underwent Contrast-Enhanced Mammography were enrolled in this retrospective study. The reference standard was pathology (118 malignant lesions and 64 benign lesions). A total of 837 textural metrics were extracted by manually segmenting the region of interest from both craniocaudally (CC) and mediolateral oblique (MLO) views. Non-parametric Wilcoxon-Mann-Whitney test, receiver operating characteristic, logistic regression and tree-based machine learning algorithms were used. The Adaptive Synthetic Sampling balancing approach was used and a feature selection process was implemented. RESULTS: In univariate analysis, the classification of malignant versus benign lesions achieved the best performance when considering the original_gldm_DependenceNonUniformity feature extracted on CC view (accuracy of 88.98%). An accuracy of 83.65% was reached in the classification of grading, whereas a slightly lower value of accuracy (81.65%) was found in the classification of the presence of the hormone receptor; the features extracted were the original_glrlm_RunEntropy and the original_gldm_DependenceNonUniformity, respectively. The results of multivariate analysis achieved the best performances when using two or more features as predictors for classifying malignant versus benign lesions from CC view images (max test accuracy of 95.83% with a non-regularized logistic regression). Considering the features extracted from MLO view images, the best test accuracy (91.67%) was obtained when predicting the grading using a classification-tree algorithm. Combinations of only two features, extracted from both CC and MLO views, always showed test accuracy values greater than or equal to 90.00%, with the only exception being the prediction of the human epidermal growth factor receptor 2, where the best performance (test accuracy of 89.29%) was obtained with the random forest algorithm. CONCLUSIONS: The results confirm that the identification of malignant breast lesions and the differentiation of histological outcomes and some molecular subtypes of tumors (mainly positive hormone receptor tumors) can be obtained with satisfactory accuracy through both univariate and multivariate analysis of textural features extracted from Contrast-Enhanced Mammography images.
RESUMO
In breast cancer patients, an accurate detection of the axillary lymph node metastasis status is essential for reducing distant metastasis occurrence probabilities. In case of patients resulted negative at both clinical and instrumental examination, the nodal status is commonly evaluated performing the sentinel lymph-node biopsy, that is a time-consuming and expensive intraoperative procedure for the sentinel lymph-node (SLN) status assessment. The aim of this study was to predict the nodal status of 142 clinically negative breast cancer patients by means of both clinical and radiomic features extracted from primary breast tumor ultrasound images acquired at diagnosis. First, different regions of interest (ROIs) were segmented and a radiomic analysis was performed on each ROI. Then, clinical and radiomic features were evaluated separately developing two different machine learning models based on an SVM classifier. Finally, their predictive power was estimated jointly implementing a soft voting technique. The experimental results showed that the model obtained by combining clinical and radiomic features provided the best performances, achieving an AUC value of 88.6%, an accuracy of 82.1%, a sensitivity of 100% and a specificity of 78.2%. The proposed model represents a promising non-invasive procedure for the SLN status prediction in clinically negative patients.