Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 114(17): 5580-7, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20384332

RESUMO

A theoretical investigation on the electronic structure of 4-dimethylamino-4'-nitrostilbene (DANS), 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino) styryl-4H-pyran (DCM), and their protonated forms is presented in an effort to rationalize recent experimental results on the tuning of the emitted color of organic light-emitting diodes through photochemically induced protonation. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been carried out on the neutral and protonated forms of DANS and DCM, employing both the B3LYP and the CAM-B3LYP functionals. It was found that the CAM-B3LYP functional leads to better agreement than the B3LYP of the calculated with the experimental absorption lambda(max) for DANS, whereas B3LYP is more appropriate than CAM-B3LYP for DCM. The results of the calculations aid in a rationalization of the observed differences of the spectra of DANS and DCM upon protonation, and in particular those differences that make DANS a more attractive system for absorbance and emission tuning.

2.
Nanoscale ; 7(38): 15840-51, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26358392

RESUMO

Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 10(9) s(-1) and 2.2 × 10(11) s(-1), respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa