RESUMO
Intracellular uptake of adenosine is essential for optimal erythroid commitment and differentiation of hematopoietic progenitor cells. The role of adenosine signaling is well documented in the regulation of blood flow, cell proliferation, apoptosis, and stem cell regeneration. However, the role of adenosine signaling in hematopoiesis remains unclear. In this study, we show that adenosine signaling inhibits the proliferation of erythroid precursors by activating the p53 pathway and hampers the terminal erythroid maturation. Furthermore, we demonstrate that the activation of specific adenosine receptors promotes myelopoiesis. Overall, our findings indicate that extracellular adenosine could be a new player in the regulation of hematopoiesis.
Assuntos
Adenosina , Eritropoese , Humanos , Adenosina/metabolismo , Hematopoese , Mielopoese , Células-Tronco Hematopoéticas/metabolismo , Diferenciação CelularRESUMO
Hypoxia-mediated red blood cell (RBC) sickling is central to the pathophysiology of sickle cell disease (SCD). The signalling nucleoside adenosine is thought to play a significant role in this process. This study investigated expression of the erythrocyte type 1 equilibrative nucleoside transporter (ENT1), a key regulator of plasma adenosine, in adult patients with SCD and carriers of sickle cell trait (SCT). Relative quantitative expression analysis of erythrocyte ENT1 was carried out by Western blot and flow cytometry. Patients with SCD with steady state conditions, either with SS or SC genotype, untreated or under hydroxycarbamide (HC) treatment, exhibited a relatively high variability of erythrocyte ENT1, but with levels not significantly different from normal controls. Most strikingly, expression of erythrocyte ENT1 was found to be significantly decreased in patients with SCD undergoing painful vaso-occlusive episode and, unexpectedly, also in healthy SCT carriers. Promoting hypoxia-induced adenosine signalling, the reduced expression of erythrocyte ENT1 might contribute to the pathophysiology of SCD and to the susceptibility of SCT individuals to altitude hypoxia or exercise to exhaustion.
Assuntos
Traço Falciforme , Humanos , Adenosina , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritrócitos/metabolismo , Hipóxia/metabolismoRESUMO
Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we show that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several inherited GPI deficiency patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system, and they have important implications for understanding the biological function of human free GPI.
Assuntos
Antígenos de Grupos Sanguíneos , Deficiências do Desenvolvimento , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Convulsões , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Glicosilfosfatidilinositóis/genética , Humanos , Células K562 , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Convulsões/enzimologia , Convulsões/genéticaRESUMO
The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.
Assuntos
Monofosfato de Adenosina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Eritropoese , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Animais , Transportador Equilibrativo 1 de Nucleosídeo/genética , Humanos , Camundongos , Camundongos KnockoutRESUMO
BACKGROUND: An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS: Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS: A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION: Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).
Assuntos
Antígenos de Grupos Sanguíneos , Gravidez , Feminino , Humanos , Células HEK293 , Prevalência , Antígenos de Grupos Sanguíneos/genética , Isoanticorpos , Estrutura MolecularRESUMO
To determine the existence of guidelines regarding the appropriate clinical use of blood and blood components, transfusion requests, and blood issuing/reception documents and procedures. The different bedside transfusion organizations/processes and hemovigilance are also analyzed. The ultimate objective is to identify safe potential options in order to improve blood safety at the lowest cost. Data emanating from eight Arabic eastern/southern Mediterranean countries who responded to five surveys were collected and tabulated. National recommendations for the clinical use of blood components especially for hemoglobinopathies are lacking in some countries. In matter of good practices in the prescription, issuing and reception of BCs, efforts were made either on national or local basis. Procedures regarding patient information and ethical issues are still lacking. Almost all Mediterranean countries apply two blood testing procedures on each patient sample. Only Morocco, Tunisia and Algeria perform bed side blood group testing; Egypt and Lebanon perform antibody screen and antiglobulin cross matching universally. Automation for blood testing is insufficiently implemented in almost all countries and electronic release is almost absent. National hemovigilance policy is implemented in Tunisia, Morocco, and Lebanon but the reporting system remains inoperative. Insufficient resources severely hinders the implementation of expensive procedures and programs; however, the present work identifies safe procedures that might save resources to improve other parts in the transfusion process (e.g. electronic release to improve safety in issuing). Moreover, setting up regulations regarding ethics in transfusing recipients along with local transfusion committees are crucially needed to implement hemovigilance in transfusion practice.
Assuntos
Benchmarking , Transfusão de Sangue , Humanos , Seguimentos , Transfusão de Componentes Sanguíneos , EgitoRESUMO
The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3',5'-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.
Assuntos
Antígenos de Grupos Sanguíneos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Agregação Plaquetária , Plaquetas/citologia , Plaquetas/metabolismo , Sistemas CRISPR-Cas , Células Eritroides/citologia , Células Eritroides/metabolismo , Deleção de Genes , Humanos , FenótipoRESUMO
BACKGROUND AND OBJECTIVES: Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS: Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION: The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).
Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Eritrócitos , Humanos , Antígenos de Grupos Sanguíneos/genética , Transfusão de Sangue , Imunogenética , Pandemias , Eritrócitos/imunologiaRESUMO
BACKGROUND AND OBJECTIVES: Non-invasive assays for predicting foetal blood group status in pregnancy serve as valuable clinical tools in the management of pregnancies at risk of detrimental consequences due to blood group antigen incompatibility. To secure clinical applicability, assays for non-invasive prenatal testing of foetal blood groups need to follow strict rules for validation and quality assurance. Here, we present a multi-national position paper with specific recommendations for validation and quality assurance for such assays and discuss their risk classification according to EU regulations. MATERIALS AND METHODS: We reviewed the literature covering validation for in-vitro diagnostic (IVD) assays in general and for non-invasive foetal RHD genotyping in particular. Recommendations were based on the result of discussions between co-authors. RESULTS: In relation to Annex VIII of the In-Vitro-Diagnostic Medical Device Regulation 2017/746 of the European Parliament and the Council, assays for non-invasive prenatal testing of foetal blood groups are risk class D devices. In our opinion, screening for targeted anti-D prophylaxis for non-immunized RhD negative women should be placed under risk class C. To ensure high quality of non-invasive foetal blood group assays within and beyond the European Union, we present specific recommendations for validation and quality assurance in terms of analytical detection limit, range and linearity, precision, robustness, pre-analytics and use of controls in routine testing. With respect to immunized women, different requirements for validation and IVD risk classification are discussed. CONCLUSION: These recommendations should be followed to ensure appropriate assay performance and applicability for clinical use of both commercial and in-house assays.
Assuntos
Antígenos de Grupos Sanguíneos , Antígenos de Grupos Sanguíneos/genética , Feminino , Sangue Fetal , Feto , Genótipo , Humanos , Gravidez , Diagnóstico Pré-Natal , Sistema do Grupo Sanguíneo Rh-Hr/genéticaRESUMO
BACKGROUND: The correct determination of D antigen could help to avoid alloimmunization in pregnant women and patients receiving blood transfusions. However, there are limitations in the identification of D variants as the partial and weak D phenotypes make the determination of D antigen a great challenge in the transfusion routine.' STUDY DESIGN AND METHODS: The molecular characterization of D variants was performed on blood donors from southeastern Brazil with atypical D typing. Furthermore, the serological profile of all RHD variant alleles identified was analyzed using different Anti-D clones. The prevalence of RHD alleles and genotypes found was compared with those described in other countries and in other regions from Brazil. RESULTS: Atypical serologic D typing occurred in 0.79 % of blood donors. The majority of RHD variant alleles (88 %) were first characterized by multiplex PCR and PCR-SSP as RHD*weak partial 4 (47 %), followed by RHD*weak D type 3 (29.9 %), RHD*weak D type 2 (3.9 %) and RHD*weak D type 1 (3.1 %). Genomic DNA sequencing characterized the RHD*weak partial 4 variants found in RHD*DAR1.2 (weak 4.2.2) (22 %), RHD*DAR3 (weak 4.0.1) (2.4 %), RHD*DAR3.1 (weak 4.0) (22 %) and RHD*DAR4 (weak 4.1) (0.8 %). RHD variant alleles associated with partial D, such as, RHD*DAU-4 (1.6 %), RHD*DAU-5 (2.4 %), RHD*DAU-6 (1.6 %), RHD* DIII type 8 (1.6 %), RHD*DVII (3.9 %) and RHD* DMH (0.8 %) were also observed. CONCLUSION: The prevalence of RHD variant alleles observed in this cohort differ from those found in other populations, including Brazilians from other regions. RHD allele distribution in specific regions should be considered for implementation of algorithms and genotyping strategies aiming at a more effective and safe transfusion.
Assuntos
Alelos , Doadores de Sangue , Polimorfismo Conformacional de Fita Simples , Sistema do Grupo Sanguíneo Rh-Hr/genética , Brasil , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase MultiplexRESUMO
Myeloproliferative neoplasms (MPNs) are a group of disorders characterized by clonal expansion of abnormal hematopoietic stem cells leading to hyperproliferation of one or more myeloid lineages. The main complications in MPNs are high risk of thrombosis and progression to myelofibrosis and leukemia. MPN patients with high risk scores are treated by hydroxyurea (HU), interferon-α, or ruxolitinib, a tyrosine kinase inhibitor. Polycythemia vera (PV) is an MPN characterized by overproduction of red blood cells (RBCs). ABCG2 is a member of the ATP-binding cassette superfamily transporters known to play a crucial role in multidrug resistance development. Proteome analysis showed higher ABCG2 levels in PV RBCs compared to RBCs from healthy controls and an additional increase of these levels in PV patients treated with HU, suggesting that ABCG2 might play a role in multidrug resistance in MPNs. In this work, we explored the role of ABCG2 in the transport of ruxolitinib and HU using human cell lines, RBCs, and in vitro differentiated erythroid progenitors. Using stopped-flow analysis, we showed that HU is not a substrate for ABCG2. Using transfected K562 cells expressing three different levels of recombinant ABCG2, MPN RBCs, and cultured erythroblasts, we showed that ABCG2 potentiates ruxolitinib-induced cytotoxicity that was blocked by the ABCG2-specific inhibitor KO143 suggesting ruxolitinib intracellular import by ABCG2. In silico modeling analysis identified possible ruxolitinib-binding site locations within the cavities of ABCG2. Our study opens new perspectives in ruxolitinib efficacy research targeting cell types depending on ABCG2 expression and polymorphisms among patients.
Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Eritrócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Policitemia Vera/tratamento farmacológico , Pirazóis/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Simulação por Computador , Dicetopiperazinas/farmacologia , Eritrócitos/efeitos dos fármacos , Células Eritroides/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Hidroxiureia/metabolismo , Hidroxiureia/farmacologia , Interferon-alfa/farmacologia , Células K562 , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Nitrilas , Fosfatidilserinas/metabolismo , Policitemia Vera/sangue , Policitemia Vera/patologia , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacocinética , PirimidinasRESUMO
BACKGROUND: X-linked chronic granulomatous disease (CGD) is a primary immunodeficiency caused by mutations in the CYBB gene (located on Xp21.1). Patients with large deletions on chromosome Xp21.1 can present with the McLeod phenotype and also Duchenne muscular dystrophy or retinitis pigmentosa. The objective of the present study was to describe a series of French patients with CGD and the McLeod phenotype. METHODS: We retrospectively collected data from the medical records of 8 patients with CGD and the McLeod phenotype registered at the French National Reference Center for blood types. RESULTS: The median age at diagnosis of CGD was 1.2 years, the median age at diagnosis of the McLeod phenotype was 4.5 years, and the median length of follow-up was 15.2 years. Four patients displayed allo-immunization, with anti-KEL20 and anti-XK1 (formerly known as anti-KL) antibodies. Five of the 6 patients with available blood smears had acanthocytosis. Neuropsychiatric, muscle-related, and ocular manifestations were present in 4, 2, and 1 of the patients, respectively. Three of the 4 patients having undergone allogeneic hematopoietic stem cell transplantation (HSCT) are alive. Overall, 5 patients are alive, and 3 are alive and well. CONCLUSION: This is the largest yet descriptive study of a series of patients with X-linked CGD and the McLeod phenotype. Although this disease combination is rare, the timely, accurate diagnosis of the McLeod phenotype is critical because of the serious post-transfusion complications. However, HSCT can be considered in these patients.
Assuntos
Doença Granulomatosa Crônica/epidemiologia , NADPH Oxidase 2/genética , Neuroacantocitose/epidemiologia , Abetalipoproteinemia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , França , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/mortalidade , Humanos , Lactente , Isoanticorpos/sangue , Masculino , Neuroacantocitose/diagnóstico , Neuroacantocitose/mortalidade , Estudos Retrospectivos , Análise de Sobrevida , Adulto JovemRESUMO
The Cromer blood group system consists of 19 antigens (16 of high prevalence and 3 of low prevalence). This study describes the identification and characterization of a new Cromer high-prevalence antigen, named CORS. The CORS-negative proband carries a c.713G>A substitution in the CD55 gene, resulting in the substitution of glycine 238 into a glutamic acid (p.Gly238Glu).
Assuntos
Antígenos de Grupos Sanguíneos/genética , Antígenos CD55/genética , Mutação de Sentido Incorreto , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Feminino , Humanos , PrevalênciaRESUMO
BACKGROUND: RHCE*ceEK is a rare RH allele mostly encountered in people of African descent. This allele is defined by four single nucleotide substitutions: c.48G>C, c.712A>G, c.787A>G and c.800T>A. Until now, it has only been reported to segregate with either RHD*01N.01 or RHD*DAR1.00. MATERIALS AND METHODS: Blood samples were drawn from a 32-year-old Tutsi pregnant woman during an antenatal visit in order to perform her type and screen. To further investigate the results found in the patient, a family study was conducted. Standard haemagglutination methods were used to investigate the subjects' red blood cells and plasma. Molecular workup on RHD and RHCE genes was carried out by DNA microarray, real-time PCR and DNA sequencing techniques. RESULTS: The patient was phenotyped as group B, D+C-E-c+e+, Hr-. A complex mixture of anti-E, anti-c, anti-Hr and anti-hrS was detected in her plasma. She was found to carry a normal RHD gene, a conventional RHCE*ceEK allele and an alternative RHCE*ceEK allele (RHCE*ceEK without c.48G>C). The family study showed that the conventional RHCE*ceEK and the alternative RHCE*ceEK alleles were associated with a RHD*01 allele and a RHD*01N.01 allele, respectively. Molecular analysis performed in the proband's mother showed a novel RHCE*ce variant allele on a RHCE*ceS -like background (RHCE*ceS with c.609G>A). CONCLUSIONS: This case study brought out new associations between RHD and RHCE alleles encoding the rare Hr- phenotype: the conventional RHCE*ceEK allele linked to the RHD*01 allele and an alternative RHCE*ceEK allele associated with the RHD*01N.01 allele. A novel RHCE*ce variant (RHCE*ceS with c.609G>A) was also reported.
Assuntos
Alelos , Haplótipos , Sistema do Grupo Sanguíneo Rh-Hr/genética , Adulto , População Negra/genética , Eritrócitos/imunologia , Feminino , Humanos , Linhagem , Gravidez , Análise de Sequência de DNARESUMO
BACKGROUND: Mta (MNS14) is a low-prevalence antigen of the MNS system. A few cases of hemolytic disease of the fetus and newborn caused by anti-Mta have been reported in the literature, but up to now this antibody has never been associated with a hemolytic transfusion reaction (HTR). CASE REPORT: A 38-year-old male with sickle cell disease undergoing exchange transfusion presented with shivering, nausea, dyspnea, and pain in the lower limbs. Biologic parameters showed increased hemolysis. The administered red blood cell (RBC) units had been issued by electronic crossmatch due to a negative antibody screening test. In the posttransfusion investigations, crossmatch of the transfused RBC units with the patient's serum showed incompatibility of one unit. The presence of an antibody against a low-prevalence antigen was suspected and further serologic testing was performed for identification. RESULTS: Anti-Mta was identified in the patient's serum. The RBCs of the incompatible unit implicated in the HTR were Mt(a+). An eluate of a posttransfusion blood sample of the patient was nonreactive with the incompatible RBCs, and the direct antiglobulin test was negative. CONCLUSION: To our knowledge, this is the first case report of an HTR associated with anti-Mta .
Assuntos
Sistema do Grupo Sanguíneo MNSs/imunologia , Reação Transfusional/etiologia , Adulto , Anemia Falciforme/imunologia , Eritroblastose Fetal/etiologia , Eritrócitos/imunologia , Transfusão Total/efeitos adversos , Humanos , MasculinoRESUMO
BACKGROUND AND OBJECTIVES: The International Society of Blood Transfusion (ISBT) Working Party for Red Cell Immunogenetics and Blood Group Terminology meets in association with the ISBT congress and has met three times since the last report: at the international meetings held in Dubai, United Arab Emirates, September 2016 and Toronto, Canada, June 2018; and at a regional congress in Copenhagen, Denmark, June 2017 for an interim session. METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature and classification were discussed. New blood group antigens were approved and named according to the serologic and molecular evidence presented. RESULTS AND CONCLUSIONS: Fifteen new blood group antigens were added to eight blood group systems. One antigen was made obsolete based on additional data. Consequently, the current total of blood group antigens recognized by the ISBT is 360, of which 322 are clustered within 36 blood groups systems. The remaining 38 antigens are currently unassigned to a known system. Clinically significant blood group antigens continue to be discovered, through serology/sequencing and/or recombinant or genomic technologies.
Assuntos
Transfusão de Sangue , Congressos como Assunto , Imunogenética , Terminologia como Assunto , Canadá , Dinamarca , Humanos , Sociedades Científicas , Emirados Árabes UnidosRESUMO
CONCLUSIONS: A workshop on the clinical significance of red blood cell alloantibodies, organized by the Executive Committee of the Working Party on Immunohaematology of the International Society of Blood Transfusion (ISBT), took place in Dubai, United Arab Emirates, on 9 September 2016, in conjunction with the 34th International Congress of the ISBT. This event was funded by the ISBT Academy, founded in 2011, to support educational and knowledge activities. This report is a summary of that meeting.
Assuntos
Transfusão de Sangue , Eritrócitos , Humanos , IsoanticorposRESUMO
Polycythemia vera is a chronic myeloproliferative neoplasm characterized by the JAK2V617F mutation, elevated blood cell counts and a high risk of thrombosis. Although the red cell lineage is primarily affected by JAK2V617F, the impact of mutated JAK2 on circulating red blood cells is poorly documented. Recently, we showed that in polycythemia vera, erythrocytes had abnormal expression of several proteins including Lu/BCAM adhesion molecule and proteins from the endoplasmic reticulum, mainly calreticulin and calnexin. Here we investigated the effects of hydroxycarbamide and interferon-α treatments on the expression of erythroid membrane proteins in a cohort of 53 patients. Surprisingly, while both drugs tended to normalize calreticulin expression, proteomics analysis showed that hydroxycarbamide deregulated the expression of 53 proteins in red cell ghosts, with overexpression and downregulation of 37 and 16 proteins, respectively. Within over-expressed proteins, hydroxycarbamide was found to enhance the expression of adhesion molecules such as Lu/BCAM and CD147, while interferon-α did not. In addition, we found that hydroxycarbamide increased Lu/BCAM phosphorylation and exacerbated red cell adhesion to its ligand laminin. Our study reveals unexpected adverse effects of hydroxycarbamide on red cell physiology in polycythemia vera and provides new insights into the effects of this molecule on gene regulation and protein recycling or maturation during erythroid differentiation. Furthermore, our study shows deregulation of Lu/BCAM and CD147 that are two ubiquitously expressed proteins linked to progression of solid tumors, paving the way for future studies to address the role of hydroxycarbamide in tissues other than blood cells in myeloproliferative neoplasms.
Assuntos
Moléculas de Adesão Celular/genética , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxiureia/farmacologia , Proteínas de Membrana/genética , Policitemia Vera/genética , Alelos , Biomarcadores , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/patologia , Feminino , Humanos , Janus Quinase 2/genética , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutação , Policitemia Vera/sangue , Policitemia Vera/diagnósticoRESUMO
BACKGROUND: Sickle cell disease (SCD) patients undergo multiple red blood cell (RBC) transfusions and are regularly exposed to low-prevalence (LP) antigens specific to individuals of African descent. This study evaluated the prevalence of antibodies against LP antigens in SCD patients and the need to identify these antibodies in everyday practice. STUDY DESIGN AND METHODS: Plasma from 211 SCD patients was tested with RBCs expressing the following LP antigens: RH10 (V), RH20 (VS), RH23 (DW ), RH30 (Goa ), KEL6 (Jsa ), and MNS6 (He). RESULTS: Nine LP antibodies were found in eight patients (3.8%): five anti-RH23, two anti-RH30, and two anti-MNS6. The exposure risk, calculated for each LP antigen, was below 3% per RBC unit, for all antigens tested. Thus, in this cohort of transfused SCD patients, the prevalence of LP antibodies was similar to that of antibodies against antigens of the FY, JK, and MNS blood group systems. These findings also reveal the occurrence of anti-RH23 in SCD patients. No anti-RH20 or anti-KEL6 were found, despite the high frequency of mismatch situations. CONCLUSION: These results highlight the immunogenicity of these LP antigens, and the evanescence of antibodies against LP antigens. They also highlight the importance of appropriate pretransfusion testing for patients frequently transfused, who are likely to be exposed to multiple types of blood group antigens.
Assuntos
Anemia Falciforme/sangue , População Negra , Eritrócitos/imunologia , Isoanticorpos/sangue , Adolescente , Adulto , Estudos de Coortes , Sistema do Grupo Sanguíneo Duffy/imunologia , Humanos , Isoantígenos , Sistema do Grupo Sanguíneo Kidd/imunologia , Sistema do Grupo Sanguíneo MNSs/imunologiaRESUMO
Patients with sickle cell disease (SCD) show a high prevalence of red blood cell (RBC) alloimmunization, but few studies have focused on children. We aimed to study the prevalence and risk factors of RBC alloimmunization in SCD children. We retrospectively analysed the medical and transfusion files for 245 SCD children hospitalized in our centre in 2014 and included 175 patients who had received at least one RBC unit in their lifetime. The main clinical and immuno-haematological characteristics of alloimmunized and non-alloimmunized patients were compared. The prevalence of alloimmunization was 13·7% [95% confidence interval (CI) (8·6-18·6)], and 7·4% [95% CI (3·5-11·3)] after excluding the probable irregular natural antibodies (anti-M, anti-Lea , anti-Leb , anti-Lex ). Main risk factors for alloimmunization were increased number of RBC units received (median of 65 vs. 10 units per patient; P = 0·01) and the presence of one or more red cell autoantibodies (46·2% vs. 4·7%; P < 0·0001). The alloimmunization rate was higher for episodically transfused than chronically transfused patients (1·43 vs. 0·24/100 units received; P < 0·001). The presence of red cell autoantibodies appears to be a major risk factor for alloimmunization in SCD children and could justify specific transfusion guidelines.